ترغب بنشر مسار تعليمي؟ اضغط هنا

The low-frequency break observed in the slow solar wind magnetic spectra

332   0   0.0 ( 0 )
 نشر من قبل Roberto Bruno
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fluctuations of solar wind magnetic field and plasma parameters exhibit a typical turbulence power spectrum with a spectral index ranging between $sim -5/3$ and $sim -3/2$. In particular, at $1$ AU, the magnetic field spectrum, observed within fast corotating streams, also shows a clear steepening for frequencies higher than the typical proton scales, of the order of $sim 3times10^{-1}$ Hz, and a flattening towards $1/f$ at frequencies lower than $sim 10^{-3}$ Hz. However, the current literature reports observations of the low-frequency break only for fast streams. Slow streams, as observed to date, have not shown a clear break, and this has commonly been attributed to slow wind intervals not being long enough. Actually, because of the longer transit time from the Sun, slow wind turbulence would be older and the frequency break would be shifted to lower frequencies with respect to fast wind. Based on this hypothesis, we performed a careful search for long-lasting slow wind intervals throughout $12$ years of Wind satellite measurements. Our search, based on stringent requirements not only on wind speed but also on the level of magnetic compressibility and Alfvenicity of the turbulent fluctuations, yielded $48$ slow wind streams lasting longer than $7$ days. This result allowed us to extend our study to frequencies sufficiently low and, for the first time in the literature, we are able to show that the $1/f$ magnetic spectral scaling is also present in the slow solar wind, provided the interval is long enough. However, this is not the case for the slow wind velocity spectrum, which keeps the typical Kolmogorov scaling throughout the analysed frequency range. After ruling out the possible role of compressibility and Alfvenicity for the 1/f scaling, a possible explanation in terms of magnetic amplitude saturation, as recently proposed in the literature, is suggested.



قيم البحث

اقرأ أيضاً

The slow solar wind is typically characterized as having low Alfvenicity. However, Parker Solar Probe (PSP) observed predominately Alfvenic slow solar wind during several of its initial encounters. From its first encounter observations, about 55.3% o f the slow solar wind inside 0.25 au is highly Alfvenic ($|sigma_C| > 0.7$) at current solar minimum, which is much higher than the fraction of quiet-Sun-associated highly Alfvenic slow wind observed at solar maximum at 1 au. Intervals of slow solar wind with different Alfvenicities seem to show similar plasma characteristics and temperature anisotropy distributions. Some low Alfvenicity slow wind intervals even show high temperature anisotropies, because the slow wind may experience perpendicular heating as fast wind does when close to the Sun. This signature is confirmed by Wind spacecraft measurements as we track PSP observations to 1 au. Further, with nearly 15 years of Wind measurements, we find that the distributions of plasma characteristics, temperature anisotropy and helium abundance ratio ($N_alpha/N_p$) are similar in slow winds with different Alfvenicities, but the distributions are different from those in the fast solar wind. Highly Alfvenic slow solar wind contains both helium-rich ($N_alpha/N_psim0.045$) and helium-poor ($N_alpha/N_psim0.015$) populations, implying it may originate from multiple source regions. These results suggest that highly Alfvenic slow solar wind shares similar temperature anisotropy and helium abundance properties with regular slow solar winds, and they thus should have multiple origins.
A major challenge in solar and heliospheric physics is understanding how highly localized regions, far smaller than 1 degree at the Sun, are the source of solar-wind structures spanning more than 20 degrees near Earth. The Suns atmosphere is divided into magnetically open regions, coronal holes, where solar-wind plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition imply that the solar wind near the HCS, the so-called slow solar wind, originates in closed regions, presumably by the processes of field-line opening or interchange reconnection. Mysteriously, however, slow wind is also often seen far from the HCS. We use high-resolution, three-dimensional magnetohydrodynamic simulations to calculate the dynamics of a coronal hole whose geometry includes a narrow corridor flanked by closed field and which is driven by supergranule-like flows at the coronal-hole boundary. We find that these dynamics result in the formation of giant arcs of closed-field plasma that extend far from the HCS and span tens of degrees in latitude and longitude at Earth, accounting for the slow solar wind observations.
Magnetic field fluctuations in the solar wind are commonly observed to follow a power law spectrum. Near proton-kinetic scales, a spectral break occurs which is commonly interpreted as a transition to kinetic turbulence. However, this transition is n ot yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from Parker Solar Probe (textit{PSP}), we measure the proton scale break over a range of heliocentric distances, enabling a measurement of the transition from inertial to kinetic scale turbulence under various plasma conditions. We find that the break frequency $f_b$ increases as the heliocentric distance $r$ decreases in the slow solar wind following a power law $f_bsim r^{-1.11}$. We also compare this to the characteristic plasma ion scales to relate the break to the possible physical mechanisms occurring at this scale. The ratio between $f_b$ and $f_c$, the Doppler shifted ion cyclotron resonance scale, is approximately unity for all plasma $beta_p$. At high $beta_p$ the ratio between $f_b$ and $f_rho$, the Doppler shifted gyroscale, is approximately unity; while at low $beta_p$ the ratio between $f_b$ and $f_d$, the Doppler shifted proton-inertial length is unity. Due to the large comparable Alfven and solar wind speeds, we analyze these results using both the standard and modified Taylor hypothesis, demonstrating robust statistical results.
Aims: We present the first measurements of the solar-wind angular-momentum (AM) flux recorded by the Solar Orbiter spacecraft. Our aim is the validation of these measurements to support future studies of the Suns AM loss. Methods: We combine 60-minut e averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser (SWA) and the magnetometer (MAG) onboard Solar Orbiter. We calculate the AM flux per solid-angle element using data from the first orbit of the missions cruise phase during 2020. We separate the contributions from protons and from magnetic stresses to the total AM flux. Results: The AM flux varies significantly over time. The particle contribution typically dominates over the magnetic-field contribution during our measurement interval. The total AM flux shows the largest variation and is typically anti-correlated with the radial solar-wind speed. We identify a compression region, potentially associated with a co-rotating interaction region or a coronal mass ejection, that leads to a significant localised increase in the AM flux, yet without a significant increase in the AM per unit mass. We repeat our analysis using the density estimate from the Radio and Plasma Waves (RPW) instrument. Using this independent method, we find a decrease in the peaks of positive AM flux but otherwise consistent results. Conclusions: Our results largely agree with previous measurements of the solar-wind AM flux in terms of amplitude, variability, and dependence on radial solar-wind bulk speed. Our analysis highlights the potential for future, more detailed, studies of the solar winds AM and its other large-scale properties with data from Solar Orbiter. We emphasise the need to study the radial evolution and latitudinal dependence of the AM flux in combination with data from Parker Solar Probe and assets at heliocentric distances of 1 au and beyond.
257 - R. A. Treumann , W. Baumjohann , 2018
A model-independent first-principle first-order investigation of the shape of turbulent density-power spectra in the ion-inertial range of the solar wind at 1 AU is presented. De-magnetised ions in the ion-inertial range of quasi-neutral plasmas resp ond to Kolmogorov (K) or Iroshnikov-Kraichnan (IK) inertial-range velocity turbulence power spectra via the spectrum of the velocity-turbulence-related random-mean-square induction-electric field. Maintenance of electrical quasi-neutrality by the ions causes deformations in the power spectral density of the turbulent density fluctuations. Kolmogorov inertial range spectra in solar wind velocity turbulence and observations of density power spectra suggest that the occasionally observed scale-limited bumps in the density-power spectrum may be traced back to the electric ion response. Magnetic power spectra react passively to the density spectrum by warranting pressure balance. This approach still neglects contribution of Hall currents and is restricted to the ion-inertial range scale. While both density and magnetic turbulence spectra in the affected range of ion-inertial scales deviate from Kolmogorov or Iroshnikov-Kraichnan, the velocity turbulence preserves its inertial range shape in this process to which spectral advection turns out to be secondary but may become observable under special external conditions. One such case observed by WIND is analysed. We discuss various aspects of this effect including the affected wavenumber scale range, dependence on angle between mean flow velocity and wavenumber and, for a radially expanding solar wind flow when assuming adiabatic expansion at fast solar wind speeds and a Parker dependence of the solar wind magnetic field on radius, also the presumable limitations on the radial location of the turbulent source region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا