ترغب بنشر مسار تعليمي؟ اضغط هنا

Bermudan option pricing by quantum amplitude estimation and Chebyshev interpolation

158   0   0.0 ( 0 )
 نشر من قبل Koichi Miyamoto
 تاريخ النشر 2021
  مجال البحث فيزياء مالية
والبحث باللغة English
 تأليف Koichi Miyamoto




اسأل ChatGPT حول البحث

Pricing of financial derivatives, in particular early exercisable options such as Bermudan options, is an important but heavy numerical task in financial institutions, and its speed-up will provide a large business impact. Recently, applications of quantum computing to financial problems have been started to be investigated. In this paper, we first propose a quantum algorithm for Bermudan option pricing. This method performs the approximation of the continuation value, which is a crucial part of Bermudan option pricing, by Chebyshev interpolation, using the values at interpolation nodes estimated by quantum amplitude estimation. In this method, the number of calls to the oracle to generate underlying asset price paths scales as $widetilde{O}(epsilon^{-1})$, where $epsilon$ is the error tolerance of the option price. This means the quadratic speed-up compared with classical Monte Carlo-based methods such as least-squares Monte Carlo, in which the oracle call number is $widetilde{O}(epsilon^{-2})$.



قيم البحث

اقرأ أيضاً

We propose three different data-driven approaches for pricing European-style call options using supervised machine-learning algorithms. These approaches yield models that give a range of fair prices instead of a single price point. The performance of the models are tested on two stock market indices: NIFTY$50$ and BANKNIFTY from the Indian equity market. Although neither historical nor implied volatility is used as an input, the results show that the trained models have been able to capture the option pricing mechanism better than or similar to the Black-Scholes formula for all the experiments. Our choice of scale free I/O allows us to train models using combined data of multiple different assets from a financial market. This not only allows the models to achieve far better generalization and predictive capability, but also solves the problem of paucity of data, the primary limitation of using machine learning techniques. We also illustrate the performance of the trained models in the period leading up to the 2020 Stock Market Crash (Jan 2019 to April 2020).
547 - Gilles Pag`es 2009
We build a sequence of empirical measures on the space D(R_+,R^d) of R^d-valued c`adl`ag functions on R_+ in order to approximate the law of a stationary R^d-valued Markov and Feller process (X_t). We obtain some general results of convergence of thi s sequence. Then, we apply them to Brownian diffusions and solutions to Levy driven SDEs under some Lyapunov-type stability assumptions. As a numerical application of this work, we show that this procedure gives an efficient way of option pricing in stochastic volatility models.
Adaptive wave model for financial option pricing is proposed, as a high-complexity alternative to the standard Black--Scholes model. The new option-pricing model, representing a controlled Brownian motion, includes two wave-type approaches: nonlinear and quantum, both based on (adaptive form of) the Schrodinger equation. The nonlinear approach comes in two flavors: (i) for the case of constant volatility, it is defined by a single adaptive nonlinear Schrodinger (NLS) equation, while for the case of stochastic volatility, it is defined by an adaptive Manakov system of two coupled NLS equations. The linear quantum approach is defined in terms of de Broglies plane waves and free-particle Schrodinger equation. In this approach, financial variables have quantum-mechanical interpretation and satisfy the Heisenberg-type uncertainty relations. Both models are capable of successful fitting of the Black--Scholes data, as well as defining Greeks. Keywords: Black--Scholes option pricing, adaptive nonlinear Schrodinger equation, adaptive Manakov system, quantum-mechanical option pricing, market-heat potential PACS: 89.65.Gh, 05.45.Yv, 03.65.Ge
A nonlinear wave alternative for the standard Black-Scholes option-pricing model is presented. The adaptive-wave model, representing controlled Brownian behavior of financial markets, is formally defined by adaptive nonlinear Schrodinger (NLS) equati ons, defining the option-pricing wave function in terms of the stock price and time. The model includes two parameters: volatility (playing the role of dispersion frequency coefficient), which can be either fixed or stochastic, and adaptive market potential that depends on the interest rate. The wave function represents quantum probability amplitude, whose absolute square is probability density function. Four types of analytical solutions of the NLS equation are provided in terms of Jacobi elliptic functions, all starting from de Broglies plane-wave packet associated with the free quantum-mechanical particle. The best agreement with the Black-Scholes model shows the adaptive shock-wave NLS-solution, which can be efficiently combined with adaptive solitary-wave NLS-solution. Adjustable weights of the adaptive market-heat potential are estimated using either unsupervised Hebbian learning, or supervised Levenberg-Marquardt algorithm. In the case of stochastic volatility, it is itself represented by the wave function, so we come to the so-called Manakov system of two coupled NLS equations (that admits closed-form solutions), with the common adaptive market potential, which defines a bidirectional spatio-temporal associative memory. Keywords: Black-Scholes option pricing, adaptive nonlinear Schrodinger equation, market heat potential, controlled stochastic volatility, adaptive Manakov system, controlled Brownian behavior
114 - Fabien Le Floch 2020
This paper presents simple formulae for the local variance gamma model of Carr and Nadtochiy, extended with a piecewise-linear local variance function. The new formulae allow to calibrate the model efficiently to market option quotes. On a small set of quotes, exact calibration is achieved under one millisecond. This effectively results in an arbitrage-free interpolation of class $C^2$. The paper proposes a good regularization when the quotes are noisy. Finally, it puts in evidence an issue of the model at-the-money, which is also present in the related one-step finite difference technique of Andreasen and Huge, and gives two solutions for it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا