ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of Adversarial Examples to Physical ECG Signals

138   0   0.0 ( 0 )
 نشر من قبل Taiga Ono
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Taiga Ono




اسأل ChatGPT حول البحث

This work aims to assess the reality and feasibility of the adversarial attack against cardiac diagnosis system powered by machine learning algorithms. To this end, we introduce adversarial beats, which are adversarial perturbations tailored specifically against electrocardiograms (ECGs) beat-by-beat classification system. We first formulate an algorithm to generate adversarial examples for the ECG classification neural network model, and study its attack success rate. Next, to evaluate its feasibility in a physical environment, we mount a hardware attack by designing a malicious signal generator which injects adversarial beats into ECG sensor readings. To the best of our knowledge, our work is the first in evaluating the proficiency of adversarial examples for ECGs in a physical setup. Our real-world experiments demonstrate that adversarial beats successfully manipulated the diagnosis results 3-5 times out of 40 attempts throughout the course of 2 minutes. Finally, we discuss the overall feasibility and impact of the attack, by clearly defining motives and constraints of expected attackers along with our experimental results.



قيم البحث

اقرأ أيضاً

We propose a new ensemble method for detecting and classifying adversarial examples generated by state-of-the-art attacks, including DeepFool and C&W. Our method works by training the members of an ensemble to have low classification error on random benign examples while simultaneously minimizing agreement on examples outside the training distribution. We evaluate on both MNIST and CIFAR-10, against oblivious and both white- and black-box adversaries.
Adversarial examples have become one of the largest challenges that machine learning models, especially neural network classifiers, face. These adversarial examples break the assumption of attack-free scenario and fool state-of-the-art (SOTA) classif iers with insignificant perturbations to human. So far, researchers achieved great progress in utilizing adversarial training as a defense. However, the overwhelming computational cost degrades its applicability and little has been done to overcome this issue. Single-Step adversarial training methods have been proposed as computationally viable solutions, however they still fail to defend against iterative adversarial examples. In this work, we first experimentally analyze several different SOTA defense methods against adversarial examples. Then, based on observations from experiments, we propose a novel single-step adversarial training method which can defend against both single-step and iterative adversarial examples. Lastly, through extensive evaluations, we demonstrate that our proposed method outperforms the SOTA single-step and iterative adversarial training defense. Compared with ATDA (single-step method) on CIFAR10 dataset, our proposed method achieves 35.67% enhancement in test accuracy and 19.14% reduction in training time. When compared with methods that use BIM or Madry examples (iterative methods) on CIFAR10 dataset, it saves up to 76.03% in training time with less than 3.78% degeneration in test accuracy.
248 - Yiwen Guo , Qizhang Li , Hao Chen 2020
The vulnerability of deep neural networks (DNNs) to adversarial examples has drawn great attention from the community. In this paper, we study the transferability of such examples, which lays the foundation of many black-box attacks on DNNs. We revis it a not so new but definitely noteworthy hypothesis of Goodfellow et al.s and disclose that the transferability can be enhanced by improving the linearity of DNNs in an appropriate manner. We introduce linear backpropagation (LinBP), a method that performs backpropagation in a more linear fashion using off-the-shelf attacks that exploit gradients. More specifically, it calculates forward as normal but backpropagates loss as if some nonlinear activations are not encountered in the forward pass. Experimental results demonstrate that this simple yet effective method obviously outperforms current state-of-the-arts in crafting transferable adversarial examples on CIFAR-10 and ImageNet, leading to more effective attacks on a variety of DNNs.
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typi cally aim for being unsuspicious, even if perceptible. However, there is no universal notion of what it means for adversarial examples to be unsuspicious. We propose an approach for modeling suspiciousness by leveraging cognitive salience. Specifically, we split an image into foreground (salient region) and background (the rest), and allow significantly larger adversarial perturbations in the background, while ensuring that cognitive salience of background remains low. We describe how to compute the resulting non-salience-preserving dual-perturbation attacks on classifiers. We then experimentally demonstrate that our attacks indeed do not significantly change perceptual salience of the background, but are highly effective against classifiers robust to conventional attacks. Furthermore, we show that adversarial training with dual-perturbation attacks yields classifiers that are more robust to these than state-of-the-art robust learning approaches, and comparable in terms of robustness to conventional attacks.
Though deep neural network has hit a huge success in recent studies and applica- tions, it still remains vulnerable to adversarial perturbations which are imperceptible to humans. To address this problem, we propose a novel network called ReabsNet to achieve high classification accuracy in the face of various attacks. The approach is to augment an existing classification network with a guardian network to detect if a sample is natural or has been adversarially perturbed. Critically, instead of simply rejecting adversarial examples, we revise them to get their true labels. We exploit the observation that a sample containing adversarial perturbations has a possibility of returning to its true class after revision. We demonstrate that our ReabsNet outperforms the state-of-the-art defense method under various adversarial attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا