ﻻ يوجد ملخص باللغة العربية
We probe local phase fluctuations of trapped two-dimensional (2D) Bose gases using matter-wave interferometry. This enables us to measure the phase correlation function, which changes from an algebraic to an exponential decay when the system crosses the Berezinskii-Kosterlitz-Thouless (BKT) transition. We identify the transition temperature $T_c$ using the universal critical BKT exponent $eta_c =0.25$ and compare the experimental value of $T_c$ with the estimate based on the critical phase-space density. Furthermore, we measure the local vortex density as a function of the local phase-space density, which shows a scale-invariant behavior following an exponential growth across the transition. Our experimental investigation is supported by Monte Carlo simulations and provides a comprehensive understanding of the BKT transition in a trapped system.
Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in classical mean-field phenomena. Here we report on the observation of stable quantum droplets containing $sim$ 800 atoms which are expected to collapse a
We use an effective one-dimensional Gross-Pitaevskii equation to study bright matter-wave solitons held in a tightly confining toroidal trapping potential, in a rotating frame of reference, as they are split and recombined on narrow barrier potential
Tans contact is a quantity that unifies many different properties of a low-temperature gas with short-range interactions, from its momentum distribution to its spatial two-body correlation function. Here, we use a Ramsey interferometric method to rea
The physics in two-dimensional (2D) systems is very different from what we observe in three-dimensional (3D) systems. Thermal fluctuations in 2D systems are enhanced, and they prevent the conventional Bose-Einstein condensation (BEC) at non-zero temp
We study the stability of a thermal $^{39}$K Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length $a$ exceeds the thermal wavelength $lambda$. We measure the general scaling laws relating the particl