ﻻ يوجد ملخص باللغة العربية
The prototype quantum random number (random bit) generators (QRNG) consists of one photon at a time falling on a $50:50$ beam splitter followed by random detection in one or the other other output beams due to the irreducible probabilistic nature of quantum mechanics. Due to the difficulties in producing single photons on demand, in practice, pulses of weak coherent (laser) light are used. In this paper we take a different approach, one that uses moderate coherent light. It is shown that a QRNG can be implemented by performing photon-number parity measurements. For moderate coherent light, the probabilities for obtaining even or odd parity in photon counts are $0.5$ each. Photon counting with single-photon resolution can be performed through use of a cascade of beam splitters and single-photon detectors as was done recently in a photon-number parity-based interferometry experiment involving coherent light.
We reverse-engineer, test and analyse hardware and firmware of the commercial quantum-optical random number generator Quantis from ID Quantique. We show that > 99% of its output data originates in physically random processes: random timing of photon
Quantum random number generation exploits inherent randomness of quantum mechanical processes and measurements. Real-time generation rate of quantum random numbers is usually limited by electronic bandwidth and data processing rates. Here we use a mu
We present a scheme for multi-bit quantum random number generation using a single qubit discrete-time quantum walk in one-dimensional space. Irrespective of the initial state of the qubit, quantum interference and entanglement of particle with the po
We present a simple and robust construction of a real-time quantum random number generator (QRNG). Our minimalist approach ensures stable operation of the device as well as its simple and straightforward hardware implementation as a stand-alone modul
A bias-free source-independent quantum random number generator scheme based on the measurement of vacuum fluctuation is proposed to realize the effective elimination of system bias and common mode noise introduced by the local oscillator. Optimal par