ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Predictive Control for the Optimization of Smart Grid Flexibility Schedules

99   0   0.0 ( 0 )
 نشر من قبل Steven De Jongh
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Model predictive control (MPC) is a method to formulate the optimal scheduling problem for grid flexibilities in a mathematical manner. The resulting time-constrained optimization problem can be re-solved in each optimization time step using classical optimization methods such as Second Order Cone Programming (SOCP) or Interior Point Methods (IPOPT). When applying MPC in a rolling horizon scheme, the impact of uncertainty in forecasts on the optimal schedule is reduced. While MPC methods promise accurate results for time-constrained grid optimization they are inherently limited by the calculation time needed for large and complex power system models. Learning the optimal control behaviour using function approximation offers the possibility to determine near-optimal control actions with short calculation time. A Neural Predictive Control (NPC) scheme is proposed to learn optimal control policies for linear and nonlinear power systems through imitation. It is demonstrated that this procedure can find near-optimal solutions, while reducing the calculation time by an order of magnitude. The learned controllers are validated using a benchmark smart grid.

قيم البحث

اقرأ أيضاً

This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the current computing resources and adaptively select the longest model prediction horizon. Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs. The number of prediction steps is equal to the number of recurrent cycles of the learned policy function. With an arbitrary initial policy function, the proposed RMPC algorithm can converge to the optimal policy by directly minimizing the designed loss function. We further prove the convergence and optimality of the RMPC algorithm thorough Bellman optimality principle, and demonstrate its generality and efficiency using two numerical examples.
Large-scale integration of renewables in power systems gives rise to new challenges for keeping synchronization and frequency stability in volatile and uncertain power flow states. To ensure the safety of operation, the system must maintain adequate disturbance rejection capability at the time scales of both rotor angle and system frequency dynamics. This calls for flexibility to be exploited on both the generation and demand sides, compensating volatility and ensuring stability at the two separate time scales. This article proposes a hierarchical power flow control architecture that involves both transmission and distribution networks as well as individual buildings to enhance both small-signal rotor angle stability and frequency stability of the transmission network. The proposed architecture consists of a transmission-level optimizer enhancing system damping ratios, a distribution-level controller following transmission commands and providing frequency support, and a building-level scheduler accounting for quality of service and following the distribution-level targets. We validate the feasibility and performance of the whole control architecture through real-time hardware-in-loop tests involving real-world transmission and distribution network models along with real devices at the Stone Edge Farm Microgrid.
Nowadays the emerging smart grid technology opens up the possibility of two-way communication between customers and energy utilities. Demand Response Management (DRM) offers the promise of saving money for commercial customers and households while he lps utilities operate more efficiently. In this paper, an Incentive-based Demand Response Optimization (IDRO) model is proposed to efficiently schedule household appliances for minimum usage during peak hours. The proposed method is a multi-objective optimization technique based on Nonlinear Auto-Regressive Neural Network (NAR-NN) which considers energy provided by the utility and rooftop installed photovoltaic (PV) system. The proposed method is tested and verified using 300 case studies (household). Data analysis for a period of one year shows a noticeable improvement in power factor and customers bill.
Frequency fluctuations in power grids, caused by unpredictable renewable energy sources, consumer behavior and trading, need to be balanced to ensure stable grid operation. Standard smart grid solutions to mitigate large frequency excursions are base d on centrally collecting data and give rise to security and privacy concerns. Furthermore, control of fluctuations is often tested by employing Gaussian perturbations. Here, we demonstrate that power grid frequency fluctuations are in general non-Gaussian, implying that large excursions are more likely than expected based on Gaussian modeling. We consider real power grid frequency measurements from Continental Europe and compare them to stochastic models and predictions based on Fokker-Planck equations. Furthermore, we review a decentral smart grid control scheme to limit these fluctuations. In particular, we derive a scaling law of how decentralized control actions reduce the magnitude of frequency fluctuations and demonstrate the power of these theoretical predictions using a test grid. Overall, we find that decentral smart grid control may reduce grid frequency excursions due to both Gaussian and non-Gaussian power fluctuations and thus offers an alternative pathway for mitigating fluctuation-induced risks.
We present recent results that demonstrate the power of viewing the problem of V-formation in a flock of birds as one of Model Predictive Control (MPC). The V-formation-MPC marriage can be understood in terms of the problem of synthesizing an optimal plan for a continuous-space and continuous-time Markov decision process (MDP), where the goal is to reach a target state that minimizes a given cost function. First, we consider ARES, an approximation algorithm for generating optimal plans (action sequences) that take an initial state of an MDP to a state whose cost is below a specified (convergence) threshold. ARES uses Particle Swarm Optimization, with adaptive sizing for both the receding horizon and the particle swarm. Inspired by Importance Splitting, the length of the horizon and the number of particles are chosen such that at least one particle reaches a next-level state. ARES can alternatively be viewed as a model-predictive control (MPC) algorithm that utilizes an adaptive receding horizon, aka Adaptive MPC (AMPC). We next present Distributed AMPC (DAMPC), a distributed version of AMPC that works with local neighborhoods. We introduce adaptive neighborhood resizing, whereby the neighborhood size is determined by the cost-based Lyapunov function evaluated over a global system state. Our experiments show that DAMPC can perform almost as well as centralized AMPC, while using only local information and a form of distributed consensus in each time step. Finally, inspired by security attacks on cyber-physical systems, we introduce controller-attacker games (CAG), where two players, a controller and an attacker, have antagonistic objectives. We formulate a special case of CAG called V-formation games, where the attackers goal is to prevent the controller from attaining V-formation. We demonstrate how adaptation in the design of the controller helps in overcoming certain attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا