ﻻ يوجد ملخص باللغة العربية
We present a general learning-based solution for restoring images suffering from spatially-varying degradations. Prior approaches are typically degradation-specific and employ the same processing across different images and different pixels within. However, we hypothesize that such spatially rigid processing is suboptimal for simultaneously restoring the degraded pixels as well as reconstructing the clean regions of the image. To overcome this limitation, we propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts computation to difficult regions in the image. SPAIR comprises of two components, (1) a localization network that identifies degraded pixels, and (2) a restoration network that exploits knowledge from the localization network in filter and feature domain to selectively and adaptively restore degraded pixels. Our key idea is to exploit the non-uniformity of heavy degradations in spatial-domain and suitably embed this knowledge within distortion-guided modules performing sparse normalization, feature extraction and attention. Our architecture is agnostic to physical formation model and generalizes across several types of spatially-varying degradations. We demonstrate the efficacy of SPAIR individually on four restoration tasks-removal of rain-streaks, raindrops, shadows and motion blur. Extensive qualitative and quantitative comparisons with prior art on 11 benchmark datasets demonstrate that our degradation-agnostic network design offers significant performance gains over state-of-the-art degradation-specific architectures. Code available at https://github.com/human-analysis/spatially-adaptive-image-restoration.
While the depth of convolutional neural networks has attracted substantial attention in the deep learning research, the width of these networks has recently received greater interest. The width of networks, defined as the size of the receptive fields
We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation. We design the generator to be an extremely lightweight function of the full-resolution image. In fact, we use pixel-wise networks; that
Deep neural networks represent a powerful class of function approximators that can learn to compress and reconstruct images. Existing image compression algorithms based on neural networks learn quantized representations with a constant spatial bit ra
A moire pattern in the images is resulting from high frequency patterns captured by the image sensor (colour filter array) that appear after demosaicing. These Moire patterns would appear in natural images of scenes with high frequency content. The M
In the past decade, sparsity-driven regularization has led to significant improvements in image reconstruction. Traditional regularizers, such as total variation (TV), rely on analytical models of sparsity. However, increasingly the field is moving t