ﻻ يوجد ملخص باللغة العربية
Superpixel segmentation has recently seen important progress benefiting from the advances in differentiable deep learning. However, the very high-resolution superpixel segmentation still remains challenging due to the expensive memory and computation cost, making the current advanced superpixel networks fail to process. In this paper, we devise Patch Calibration Networks (PCNet), aiming to efficiently and accurately implement high-resolution superpixel segmentation. PCNet follows the principle of producing high-resolution output from low-resolution input for saving GPU memory and relieving computation cost. To recall the fine details destroyed by the down-sampling operation, we propose a novel Decoupled Patch Calibration (DPC) branch for collaboratively augment the main superpixel generation branch. In particular, DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries. By sharing the parameters of DPC and main branches, the fine-detailed knowledge learned from high-resolution patches will be transferred to help calibrate the destroyed information. To the best of our knowledge, we make the first attempt to consider the deep-learning-based superpixel generation for high-resolution cases. To facilitate this research, we build evaluation benchmarks from two public datasets and one new constructed one, covering a wide range of diversities from fine-grained human parts to cityscapes. Extensive experiments demonstrate that our PCNet can not only perform favorably against the state-of-the-arts in the quantitative results but also improve the resolution upper bound from 3K to 5K on 1080Ti GPUs.
Superpixel algorithms are a common pre-processing step for computer vision algorithms such as segmentation, object tracking and localization. Many superpixel methods only rely on colors features for segmentation, limiting performance in low-contrast
The high dimensionality of images presents architecture and sampling-efficiency challenges for likelihood-based generative models. Previous approaches such as VQ-VAE use deep autoencoders to obtain compact representations, which are more practical as
Robust automated organ segmentation is a prerequisite for computer-aided diagnosis (CAD), quantitative imaging analysis and surgical assistance. For high-variability organs such as the pancreas, previous approaches report undesirably low accuracies.
In medical imaging, Class-Activation Map (CAM) serves as the main explainability tool by pointing to the region of interest. Since the localization accuracy from CAM is constrained by the resolution of the models feature map, one may expect that segm
Subsampling unconditional generative adversarial networks (GANs) to improve the overall image quality has been studied recently. However, these methods often require high training costs (e.g., storage space, parameter tuning) and may be inefficient o