ﻻ يوجد ملخص باللغة العربية
Superpixel algorithms are a common pre-processing step for computer vision algorithms such as segmentation, object tracking and localization. Many superpixel methods only rely on colors features for segmentation, limiting performance in low-contrast regions and applicability to infrared or medical images where object boundaries have wide appearance variability. We study the inclusion of deep image features in the SLIC superpixel algorithm to exploit higher-level image representations. In addition, we devise a trainable superpixel algorithm, yielding an intermediate domain-specific image representation that can be applied to different tasks. A clustering-based superpixel algorithm is transformed into a pixel-wise classification task and superpixel training data is derived from semantic segmentation datasets. Our results demonstrate that this approach is able to improve superpixel quality consistently.
Robust automated organ segmentation is a prerequisite for computer-aided diagnosis (CAD), quantitative imaging analysis and surgical assistance. For high-variability organs such as the pancreas, previous approaches report undesirably low accuracies.
Superpixel segmentation has recently seen important progress benefiting from the advances in differentiable deep learning. However, the very high-resolution superpixel segmentation still remains challenging due to the expensive memory and computation
We propose a novel approach for instance-level image retrieval. It produces a global and compact fixed-length representation for each image by aggregating many region-wise descriptors. In contrast to previous works employing pre-trained deep networks
Image representations, from SIFT and Bag of Visual Words to Convolutional Neural Networks (CNNs), are a crucial component of almost any image understanding system. Nevertheless, our understanding of them remains limited. In this paper we conduct a di
Model explanation techniques play a critical role in understanding the source of a models performance and making its decisions transparent. Here we investigate if explanation techniques can also be used as a mechanism for scientific discovery. We mak