ترغب بنشر مسار تعليمي؟ اضغط هنا

Inter-Species Cell Detection: Datasets on pulmonary hemosiderophages in equine, human and feline specimens

50   0   0.0 ( 0 )
 نشر من قبل Christian Marzahl
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulmonary hemorrhage (P-Hem) occurs among multiple species and can have various causes. Cytology of bronchoalveolarlavage fluid (BALF) using a 5-tier scoring system of alveolar macrophages based on their hemosiderin content is considered the most sensitive diagnostic method. We introduce a novel, fully annotated multi-species P-Hem dataset which consists of 74 cytology whole slide images (WSIs) with equine, feline and human samples. To create this high-quality and high-quantity dataset, we developed an annotation pipeline combining human expertise with deep learning and data visualisation techniques. We applied a deep learning-based object detection approach trained on 17 expertly annotated equine WSIs, to the remaining 39 equine, 12 human and 7 feline WSIs. The resulting annotations were semi-automatically screened for errors on multiple types of specialised annotation maps and finally reviewed by a trained pathologists. Our dataset contains a total of 297,383 hemosiderophages classified into five grades. It is one of the largest publicly availableWSIs datasets with respect to the number of annotations, the scanned area and the number of species covered.



قيم البحث

اقرأ أيضاً

Distal facial Electromyography (EMG) can be used to detect smiles and frowns with reasonable accuracy. It capitalizes on volume conduction to detect relevant muscle activity, even when the electrodes are not placed directly on the source muscle. The main advantage of this method is to prevent occlusion and obstruction of the facial expression production, whilst allowing EMG measurements. However, measuring EMG distally entails that the exact source of the facial movement is unknown. We propose a novel method to estimate specific Facial Action Units (AUs) from distal facial EMG and Computer Vision (CV). This method is based on Independent Component Analysis (ICA), Non-Negative Matrix Factorization (NNMF), and sorting of the resulting components to determine which is the most likely to correspond to each CV-labeled action unit (AU). Performance on the detection of AU06 (Orbicularis Oculi) and AU12 (Zygomaticus Major) was estimated by calculating the agreement with Human Coders. The results of our proposed algorithm showed an accuracy of 81% and a Cohens Kappa of 0.49 for AU6; and accuracy of 82% and a Cohens Kappa of 0.53 for AU12. This demonstrates the potential of distal EMG to detect individual facial movements. Using this multimodal method, several AU synergies were identified. We quantified the co-occurrence and timing of AU6 and AU12 in posed and spontaneous smiles using the human-coded labels, and for comparison, using the continuous CV-labels. The co-occurrence analysis was also performed on the EMG-based labels to uncover the relationship between muscle synergies and the kinematics of visible facial movement.
When crowdsourcing systems are used in combination with machine inference systems in the real world, they benefit the most when the machine system is deeply integrated with the crowd workers. However, if researchers wish to integrate the crowd with o ff-the-shelf machine classifiers, this deep integration is not always possible. This work explores two strategies to increase accuracy and decrease cost under this setting. First, we show that reordering tasks presented to the human can create a significant accuracy improvement. Further, we show that greedily choosing parameters to maximize machine accuracy is sub-optimal, and joint optimization of the combined system improves performance.
Computer-assisted multimodal training is an effective way of learning complex motor skills in various applications. In particular disciplines (eg. healthcare) incompetency in performing dexterous hands-on examinations (clinical palpation) may result in misdiagnosis of symptoms, serious injuries or even death. Furthermore, a high quality clinical examination can help to exclude significant pathology, and reduce time and cost of diagnosis by eliminating the need for unnecessary medical imaging. Medical palpation is used regularly as an effective preliminary diagnosis method all around the world but years of training are required currently to achieve competency. This paper focuses on a multimodal palpation training system to teach and improve clinical examination skills in relation to the abdomen. It is our aim to shorten significantly the palpation training duration by increasing the frequency of rehearsals as well as providing essential augmented feedback on how to perform various abdominal palpation techniques which has been captured and modelled from medical experts. Twenty three first year medical students divided into a control group (n=8), a semi-visually trained group (n=8), and a fully visually trained group (n=7) were invited to perform three palpation tasks (superficial, deep and liver). The medical students performances were assessed using both computer-based and human-based methods where a positive correlation was shown between the generated scores, r=.62, p(one-tailed)<.05. The visually-trained group significantly outperformed the control group in which abstract visualisation of applied forces and their palmar locations were provided to the students during each palpation examination (p<.05). Moreover, a positive trend was observed between groups when visual feedback was presented, J=132, z=2.62, r=0.55.
288 - Po-Ming Law , Sana Malik , Fan Du 2020
While decision makers have begun to employ machine learning, machine learning models may make predictions that bias against certain demographic groups. Semi-automated bias detection tools often present reports of automatically-detected biases using a recommendation list or visual cues. However, there is a lack of guidance concerning which presentation style to use in what scenarios. We conducted a small lab study with 16 participants to investigate how presentation style might affect user behaviors in reviewing bias reports. Participants used both a prototype with a recommendation list and a prototype with visual cues for bias detection. We found that participants often wanted to investigate the performance measures that were not automatically detected as biases. Yet, when using the prototype with a recommendation list, they tended to give less consideration to such measures. Grounded in the findings, we propose information load and comprehensiveness as two axes for characterizing bias detection tasks and illustrate how the two axes could be adopted to reason about when to use a recommendation list or visual cues.
Human action recognition is used in many applications such as video surveillance, human computer interaction, assistive living, and gaming. Many papers have appeared in the literature showing that the fusion of vision and inertial sensing improves re cognition accuracies compared to the situations when each sensing modality is used individually. This paper provides a survey of the papers in which vision and inertial sensing are used simultaneously within a fusion framework in order to perform human action recognition. The surveyed papers are categorized in terms of fusion approaches, features, classifiers, as well as multimodality datasets considered. Challenges as well as possible future directions are also stated for deploying the fusion of these two sensing modalities under realistic conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا