ﻻ يوجد ملخص باللغة العربية
Human action recognition is used in many applications such as video surveillance, human computer interaction, assistive living, and gaming. Many papers have appeared in the literature showing that the fusion of vision and inertial sensing improves recognition accuracies compared to the situations when each sensing modality is used individually. This paper provides a survey of the papers in which vision and inertial sensing are used simultaneously within a fusion framework in order to perform human action recognition. The surveyed papers are categorized in terms of fusion approaches, features, classifiers, as well as multimodality datasets considered. Challenges as well as possible future directions are also stated for deploying the fusion of these two sensing modalities under realistic conditions.
One of the major reasons for misclassification of multiplex actions during action recognition is the unavailability of complementary features that provide the semantic information about the actions. In different domains these features are present wit
Convolutional Neural Networks (CNNs) are successful deep learning models in the field of computer vision. To get the maximum advantage of CNN model for Human Action Recognition (HAR) using inertial sensor data, in this paper, we use 4 types of spatia
Convolutional Neural Network (CNN) provides leverage to extract and fuse features from all layers of its architecture. However, extracting and fusing intermediate features from different layers of CNN structure is still uninvestigated for Human Actio
Distal facial Electromyography (EMG) can be used to detect smiles and frowns with reasonable accuracy. It capitalizes on volume conduction to detect relevant muscle activity, even when the electrodes are not placed directly on the source muscle. The
In this report, our approach to tackling the task of ActivityNet 2018 Kinetics-600 challenge is described in detail. Though spatial-temporal modelling methods, which adopt either such end-to-end framework as I3D cite{i3d} or two-stage frameworks (i.e