ﻻ يوجد ملخص باللغة العربية
Boron rich chalcogenides have been predicted to have excellent properties for optical and mechanical applications in recent times. In this regard, we report the electronic, optical and mechanical properties of recently synthesized boron rich chalcogenide compounds, B12X (X = S and Se) using density functional theory for the first time. The effects of exchange and correlation functional on these properties are also investigated. The consistency of the obtained crystal structure with the reported experimental results has been checked in terms of lattice parameters. The considered materials are mechanically stable, brittle and elastically anisotropic. Furthermore, the elastic moduli and hardness parameters are calculated, which show that B12S is likely to be a prominent member of hard materials family compared to B12Se. The origin of different in hardness is explained on the basis of density of states near the Fermi level. Reasonably good values of fracture toughness and machinability index for B12X (X= S and Se) are reported. The melting point, Tm for the B12S and B12Se compounds suggests that both solids are stable, at least up to 4208 and 3577 K, respectively. Indirect band gap of B12S (2.27 eV) and B12Se (1.30 eV) are obtained using the HSE06 functional.The electrons of B12Se compound show lighter average effective mass compared to that of B12S compound, which signifies higher mobility of charge carriers in B12Se. The optical properties are characterized using GGA-PBE and HSE06 method and discussed in detail. These compounds possess bulk optical anisotropy and excellent absorption coefficients in visible light region along with very low static value of reflectivity spectra (range: 7.42-14.0% using both functionals) are noted. Such useful features of the compounds under investigation show promise for applications in optoelectronic and mechanical sectors.
New boron-rich sulfide B6S and selenide B6Se have been discovered from high pressure - high temperature synthesis combined with ab initio evolutionary crystal structure prediction, and studied by synchrotron X-ray diffraction and Raman spectroscopy a
In the present study, the structural and hitherto uninvestigated mechanical (elastic stiffness constants, machinability index, Cauchy pressure, anisotropy indices, brittleness/ductility, Poissons ratio), electronic, optical, and thermodynamic propert
In the present study, the structural, electronic, optical and thermoelectric properties of two isostructural chalcogenide materials, NaInS2 and NaInSe2 with hexagonal symmetry (R-3m) have been studied using the first principles method. A very good ag
A DFT study of the synthesized MAX phase Zr2SeC has been carried out for the first time to explore its physical properties for possible applications in many sectors. The studied properties are compared with prior known MAX phase Zr2SC. The structural
In the present work, the structural and hitherto unexplored thermal and mechanical properties of NaInS2-xSex (x = 0, 0.5, 1.0, 1.5 and 2.0) compounds have been studied using the density functional theory. Besides, the elastic anisotropy indices and h