ترغب بنشر مسار تعليمي؟ اضغط هنا

A Two-step Heuristic for the Periodic Demand Estimation Problem

90   0   0.0 ( 0 )
 نشر من قبل Greta Laage
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Freight carriers rely on tactical plans to satisfy demand in a cost-effective way. For computational tractability in real large-scale settings, such plans are typically computed by solving deterministic and cyclic formulations. An important input is the periodic demand, i.e., the demand that is expected to repeat in each period of the planning horizon. Motivated by the discrepancy between time series forecasts of demand in each period and the periodic demand, Laage et al. (2021) recently introduced the Periodic Demand Estimation (PDE) problem and showed that it has a high value. However, they made strong assumptions on the solution space so that the problem could be solved by enumeration. In this paper we significantly extend their work. We propose a new PDE formulation that relaxes the strong assumptions on the solution space. We solve large instances of this formulation with a two-step heuristic. The first step reduces the dimension of the feasible space by performing clustering of commodities based on instance-specific information about demand and supply interactions. The formulation along with the first step allow to solve the problem in a second step by either metaheuristics or the state-of-the-art black-box optimization solver NOMAD. In an extensive empirical study using real data from the Canadian National Railway Company, we show that our methodology produces high quality solutions and outperforms existing ones.



قيم البحث

اقرأ أيضاً

Freight carriers rely on tactical planning to design their service network to satisfy demand in a cost-effective way. For computational tractability, deterministic and cyclic Service Network Design (SND) formulations are used to solve large-scale pro blems. A central input is the periodic demand, that is, the demand expected to repeat in every period in the planning horizon. In practice, demand is predicted by a time series forecasting model and the periodic demand is the average of those forecasts. This is, however, only one of many possible mappings. The problem consisting in selecting this mapping has hitherto been overlooked in the literature. We propose to use the structure of the downstream decision-making problem to select a good mapping. For this purpose, we introduce a multilevel mathematical programming formulation that explicitly links the time series forecasts to the SND problem of interest. The solution is a periodic demand estimate that minimizes costs over the tactical planning horizon. We report results in an extensive empirical study of a large-scale application from the Canadian National Railway Company. They clearly show the importance of the periodic demand estimation problem. Indeed, the planning costs exhibit an important variation over different periodic demand estimates and using an estimate different from the mean forecast can lead to substantial cost reductions. Moreover, the costs associated with the period demand estimates based on forecasts were comparable to, or even better than those obtained using the mean of actual demand.
In this paper an extension of the sparse decomposition problem is considered and an algorithm for solving it is presented. In this extension, it is known that one of the shift
The load pick-up (LPP) problem searches the optimal configuration of the electrical distribution system (EDS), aiming to minimize the power loss or provide maximum power to the load ends. The piecewise linearization (PWL) approximation method can be used to tackle the nonlinearity and nonconvexity in network power flow (PF) constraints, and transform the LPP model into a mixed-integer linear programming model (LPP-MILP model).However, for the PWL approximation based PF constraints, big linear approximation errors will affect the accuracy and feasibility of the LPP-MILP models solving results. And the long modeling and solving time of the direct solution procedure of the LPP-MILP model may affect the applicability of the LPP optimization scheme. This paper proposes a multi-step PWL approximation based solution for the LPP problem in the EDS. In the proposed multi-step solution procedure, the variable upper bounds in the PWL approximation functions are dynamically renewed to reduce the approximation errors effectively. And the multi-step solution procedure can significantly decrease the modeling and solving time of the LPP-MILP model, which ensure the applicability of the LPP optimization scheme. For the two main application schemes for the LPP problem (i.e. network optimization reconfiguration and service restoration), the effectiveness of the proposed method is demonstrated via case studies using a real 13-bus EDS and a real 1066-bus EDS.
The thermal unit commitment (UC) problem often can be formulated as a mixed integer quadratic programming (MIQP), which is difficult to solve efficiently, especially for large-scale instances. In this paper, with projecting unit generation level onto [0,1] and reformulation techniques, a novel two binary (2-bin) variables MIQP formulation for UC problem is presented. We show that 2-bin formulation is more compact than the state-of-the-art one binary (1-bin) variable formulation and three binary (3-bin) variables formulation. Moreover, 2-bin formulation is tighter than 1-bin and 3-bin formulations in quadratic cost function, and it is tighter than 1-bin formulation in linear constraints. Three mixed integer linear programming (MILP) formulations can be obtained from three UC MIQPs by replacing the quadratic terms in the objective functions by a sequence of piece-wise perspective-cuts. 2-bin MILP is also the best one due to the similar reasons of MIQP. The simulation results for realistic instances that range in size from 10 to 200 units over a scheduling period of 24 hours show that the proposed 2-bin formulations are competitive with currently state-of-the-art formulations and promising for large-scale UC problems.
Motivated by the increasing exposition of decision makers to both statistical and judgemental based sources of demand information, we develop in this paper a fuzzy Gaussian Mixture Model (GMM) for the newsvendor permitting to mix probabilistic inputs with a subjective weight modelled as a fuzzy number. The developed framework can model for instance situations where sales are impacted by customers sensitive to online review feedbacks or expert opinions. It can also model situations where a marketing campaign leads to different stochastic alternatives for the demand with a fuzzy weight. Thanks to a tractable mathematical application of the fuzzy machinery on the newsvendor problem, we derived the optimal ordering strategy taking into account both probabilistic and fuzzy components of the demand. We show that the fuzzy GMM can be rewritten as a classical newsvendor problem with an associated density function involving these stochastic and fuzzy components of the demand. The developed model enables to relax the single modality of the demand distribution usually used in the newsvendor literature and to encode the risk attitude of the decision maker.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا