ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal Kernel Consistency for Blind Video Super-Resolution

99   0   0.0 ( 0 )
 نشر من قبل Hongkai Wen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning-based blind super-resolution (SR) methods have recently achieved unprecedented performance in upscaling frames with unknown degradation. These models are able to accurately estimate the unknown downscaling kernel from a given low-resolution (LR) image in order to leverage the kernel during restoration. Although these approaches have largely been successful, they are predominantly image-based and therefore do not exploit the temporal properties of the kernels across multiple video frames. In this paper, we investigated the temporal properties of the kernels and highlighted its importance in the task of blind video super-resolution. Specifically, we measured the kernel temporal consistency of real-world videos and illustrated how the estimated kernels might change per frame in videos of varying dynamicity of the scene and its objects. With this new insight, we revisited previous popular video SR approaches, and showed that previous assumptions of using a fixed kernel throughout the restoration process can lead to visual artifacts when upscaling real-world videos. In order to counteract this, we tailored existing single-image and video SR techniques to leverage kernel consistency during both kernel estimation and video upscaling processes. Extensive experiments on synthetic and real-world videos show substantial restoration gains quantitatively and qualitatively, achieving the new state-of-the-art in blind video SR and underlining the potential of exploiting kernel temporal consistency.



قيم البحث

اقرأ أيضاً

Applying image processing algorithms independently to each video frame often leads to temporal inconsistency in the resulting video. To address this issue, we present a novel and general approach for blind video temporal consistency. Our method is on ly trained on a pair of original and processed videos directly instead of a large dataset. Unlike most previous methods that enforce temporal consistency with optical flow, we show that temporal consistency can be achieved by training a convolutional network on a video with the Deep Video Prior. Moreover, a carefully designed iteratively reweighted training strategy is proposed to address the challenging multimodal inconsistency problem. We demonstrate the effectiveness of our approach on 7 computer vision tasks on videos. Extensive quantitative and perceptual experiments show that our approach obtains superior performance than state-of-the-art methods on blind video temporal consistency. Our source codes are publicly available at github.com/ChenyangLEI/deep-video-prior.
Most recent video super-resolution (SR) methods either adopt an iterative manner to deal with low-resolution (LR) frames from a temporally sliding window, or leverage the previously estimated SR output to help reconstruct the current frame recurrentl y. A few studies try to combine these two structures to form a hybrid framework but have failed to give full play to it. In this paper, we propose an omniscient framework to not only utilize the preceding SR output, but also leverage the SR outputs from the present and future. The omniscient framework is more generic because the iterative, recurrent and hybrid frameworks can be regarded as its special cases. The proposed omniscient framework enables a generator to behave better than its counterparts under other frameworks. Abundant experiments on public datasets show that our method is superior to the state-of-the-art methods in objective metrics, subjective visual effects and complexity. Our code will be made public.
Most conventional supervised super-resolution (SR) algorithms assume that low-resolution (LR) data is obtained by downscaling high-resolution (HR) data with a fixed known kernel, but such an assumption often does not hold in real scenarios. Some rece nt blind SR algorithms have been proposed to estimate different downscaling kernels for each input LR image. However, they suffer from heavy computational overhead, making them infeasible for direct application to videos. In this work, we present DynaVSR, a novel meta-learning-based framework for real-world video SR that enables efficient downscaling model estimation and adaptation to the current input. Specifically, we train a multi-frame downscaling module with various types of synthetic blur kernels, which is seamlessly combined with a video SR network for input-aware adaptation. Experimental results show that DynaVSR consistently improves the performance of the state-of-the-art video SR models by a large margin, with an order of magnitude faster inference time compared to the existing blind SR approaches.
The video super-resolution (VSR) task aims to restore a high-resolution (HR) video frame by using its corresponding low-resolution (LR) frame and multiple neighboring frames. At present, many deep learning-based VSR methods rely on optical flow to pe rform frame alignment. The final recovery results will be greatly affected by the accuracy of optical flow. However, optical flow estimation cannot be completely accurate, and there are always some errors. In this paper, we propose a novel deformable non-local network (DNLN) which is a non-optical-flow-based method. Specifically, we apply the deformable convolution and improve its ability of adaptive alignment at the feature level. Furthermore, we utilize a non-local structure to capture the global correlation between the reference frame and the aligned neighboring frames, and simultaneously enhance desired fine details in the aligned frames. To reconstruct the final high-quality HR video frames, we use residual in residual dense blocks to take full advantage of the hierarchical features. Experimental results on benchmark datasets demonstrate that the proposed DNLN can achieve state-of-the-art performance on VSR task.
Video super-resolution, which aims at producing a high-resolution video from its corresponding low-resolution version, has recently drawn increasing attention. In this work, we propose a novel method that can effectively incorporate temporal informat ion in a hierarchical way. The input sequence is divided into several groups, with each one corresponding to a kind of frame rate. These groups provide complementary information to recover missing details in the reference frame, which is further integrated with an attention module and a deep intra-group fusion module. In addition, a fast spatial alignment is proposed to handle videos with large motion. Extensive results demonstrate the capability of the proposed model in handling videos with various motion. It achieves favorable performance against state-of-the-art methods on several benchmark datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا