ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-Supervised Learning for Channel Charting-Aided IoT Localization in Millimeter Wave Networks

82   0   0.0 ( 0 )
 نشر من قبل Qianqian Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a novel framework is proposed for channel charting (CC)-aided localization in millimeter wave networks. In particular, a convolutional autoencoder model is proposed to estimate the three-dimensional location of wireless user equipment (UE), based on multipath channel state information (CSI), received by different base stations. In order to learn the radio-geometry map and capture the relative position of each UE, an autoencoder-based channel chart is constructed in an unsupervised manner, such that neighboring UEs in the physical space will remain close in the channel chart. Next, the channel charting model is extended to a semi-supervised framework, where the autoencoder is divided into two components: an encoder and a decoder, and each component is optimized individually, using the labeled CSI dataset with associated location information, to further improve positioning accuracy. Simulation results show that the proposed CC-aided semi-supervised localization yields a higher accuracy, compared with existing supervised positioning and conventional unsupervised CC approaches.



قيم البحث

اقرأ أيضاً

Internet of Things is one of the most promising technology of the fifth-generation (5G) mobile broadband systems. Data-driven wireless services of 5G systems require unprecedented capacity and availability. The millimeter-wave based wireless communic ation technologies are expected to play an essential role in future 5G systems. In this article, we describe the three broad categories of fifth-generation services, viz., enhanced mobile broadband, ultra-reliable and low-latency communications, and massive machine-type communications. Furthermore, we introduce the potential issues of consumer devices under a unifying 5G framework. We provide the state-of-the-art overview with an emphasis on technical challenges when applying millimeter-wave (mmWave) technology to support the massive Internet of Things applications. Our discussion highlights the challenges and solutions, particularly for communication/computation requirements in consumer devices under the millimeter-wave 5G framework.
Heterogeneous Ultra-Dense Network (HUDN) is one of the vital networking architectures due to its ability to enable higher connectivity density and ultra-high data rates. Rational user association and power control schedule in HUDN can reduce wireless interference. This paper proposes a novel idea for resolving the joint user association and power control problem: the optimal user association and Base Station transmit power can be represented by channel information. Then, we solve this problem by formulating an optimal representation function. We model the HUDNs as a heterogeneous graph and train a Graph Neural Network (GNN) to approach this representation function by using semi-supervised learning, in which the loss function is composed of the unsupervised part that helps the GNN approach the optimal representation function and the supervised part that utilizes the previous experience to reduce useless exploration. We separate the learning process into two parts, the generalization-representation learning (GRL) part and the specialization-representation learning (SRL) part, which train the GNN for learning representation for generalized scenario quasi-static user distribution scenario, respectively. Simulation results demonstrate that the proposed GRL-based solution has higher computational efficiency than the traditional optimization algorithm, and the performance of SRL outperforms the GRL.
Besides being part of the Internet of Things (IoT), drones can play a relevant role in it as enablers. The 3D mobility of UAVs can be exploited to improve node localization in IoT networks for, e.g., search and rescue or goods localization and tracki ng. One of the widespread IoT communication technologies is Long Range Wide Area Network (LoRaWAN), which allows achieving long communication distances with low power. In this work, we present a drone-aided localization system for LoRa networks in which a UAV is used to improve the estimation of a nodes location initially provided by the network. We characterize the relevant parameters of the communication system and use them to develop and test a search algorithm in a realistic simulated scenario. We then move to the full implementation of a real system in which a drone is seamlessly integrated into Swisscoms LoRa network. The drone coordinates with the network with a two-way exchange of information which results in an accurate and fully autonomous localization system. The results obtained in our field tests show a ten-fold improvement in localization precision with respect to the estimation provided by the fixed network. Up to our knowledge, this is the first time a UAV is successfully integrated in a LoRa network to improve its localization accuracy.
107 - Gui Zhou , Cunhua Pan , Hong Ren 2021
Channel estimation in the RIS-aided massive multiuser multiple-input single-output (MU-MISO) wireless communication systems is challenging due to the passive feature of RIS and the large number of reflecting elements that incur high channel estimatio n overhead. To address this issue, we propose a novel cascaded channel estimation strategy with low pilot overhead by exploiting the sparsity and the correlation of multiuser cascaded channels in millimeter-wave massive MISO systems. Based on the fact that the phsical positions of the BS, the RIS and users may not change in several or even tens of consecutive channel coherence blocks, we first estimate the full channel state information (CSI) including all the angle and gain information in the first coherence block, and then only re-estimate the channel gains in the remaining coherence blocks with much less pilot overhead. In the first coherence block, we propose a two-phase channel estimation method, in which the cascaded channel of one typical user is estimated in Phase I based on the linear correlation among cascaded paths, while the cascaded channels of other users are estimated in Phase II by utilizing the partial CSI of the common base station (BS)-RIS channel obtained in Phase I. The total theoretical minimum pilot overhead in the first coherence block is $8J-2+(K-1)leftlceil (8J-2)/Lrightrceil $, where $K$, $L$ and $J$ denote the numbers of users, paths in the BS-RIS channel and paths in the RIS-user channel, respectively. In each of the remaining coherence blocks, the minimum pilot overhead is $JK$. Moreover, the training phase shift matrices at the RIS are optimized to improve the estimation performance.
There has been a growing concern about the fairness of decision-making systems based on machine learning. The shortage of labeled data has been always a challenging problem facing machine learning based systems. In such scenarios, semi-supervised lea rning has shown to be an effective way of exploiting unlabeled data to improve upon the performance of model. Notably, unlabeled data do not contain label information which itself can be a significant source of bias in training machine learning systems. This inspired us to tackle the challenge of fairness by formulating the problem in a semi-supervised framework. In this paper, we propose a semi-supervised algorithm using neural networks benefiting from unlabeled data to not just improve the performance but also improve the fairness of the decision-making process. The proposed model, called SSFair, exploits the information in the unlabeled data to mitigate the bias in the training data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا