ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperbolic Hypergraphs for Sequential Recommendation

65   0   0.0 ( 0 )
 نشر من قبل Yicong Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hypergraphs have been becoming a popular choice to model complex, non-pairwise, and higher-order interactions for recommender system. However, compared with traditional graph-based methods, the constructed hypergraphs are usually much sparser, which leads to a dilemma when balancing the benefits of hypergraphs and the modelling difficulty. Moreover, existing sequential hypergraph recommendation overlooks the temporal modelling among user relationships, which neglects rich social signals from the recommendation data. To tackle the above shortcomings of the existing hypergraph-based sequential recommendations, we propose a novel architecture named Hyperbolic Hypergraph representation learning method for Sequential Recommendation (H2SeqRec) with pre-training phase. Specifically, we design three self-supervised tasks to obtain the pre-training item embeddings to feed or fuse into the following recommendation architecture (with two ways to use the pre-trained embeddings). In the recommendation phase, we learn multi-scale item embeddings via a hierarchical structure to capture multiple time-span information. To alleviate the negative impact of sparse hypergraphs, we utilize a hyperbolic space-based hypergraph convolutional neural network to learn the dynamic item embeddings. Also, we design an item enhancement module to capture dynamic social information at each timestamp to improve effectiveness. Extensive experiments are conducted on two real-world datasets to prove the effectiveness and high performance of the model.

قيم البحث

اقرأ أيضاً

123 - Xu Xie , Fei Sun , Zhaoyang Liu 2020
Sequential recommendation methods play a crucial role in modern recommender systems because of their ability to capture a users dynamic interest from her/his historical interactions. Despite their success, we argue that these approaches usually rely on the sequential prediction task to optimize the huge amounts of parameters. They usually suffer from the data sparsity problem, which makes it difficult for them to learn high-quality user representations. To tackle that, inspired by recent advances of contrastive learning techniques in the computer version, we propose a novel multi-task model called textbf{C}ontrastive textbf{L}earning for textbf{S}equential textbf{Rec}ommendation~(textbf{CL4SRec}). CL4SRec not only takes advantage of the traditional next item prediction task but also utilizes the contrastive learning framework to derive self-supervision signals from the original user behavior sequences. Therefore, it can extract more meaningful user patterns and further encode the user representation effectively. In addition, we propose three data augmentation approaches to construct self-supervision signals. Extensive experiments on four public datasets demonstrate that CL4SRec achieves state-of-the-art performance over existing baselines by inferring better user representations.
65 - Ke Sun , Tieyun Qian 2019
The context information such as product category plays a critical role in sequential recommendation. Recent years have witnessed a growing interest in context-aware sequential recommender systems. Existing studies often treat the contexts as auxiliar y feature vectors without considering the sequential dependency in contexts. However, such a dependency provides valuable clues to predict the users future behavior. For example, a user might buy electronic accessories after he/she buy an electronic product. In this paper, we propose a novel seq2seq translation architecture to highlight the importance of sequential dependency in contexts for sequential recommendation. Specifically, we first construct a collateral context sequence in addition to the main interaction sequence. We then generalize recent advancements in translation model from sequences of words in two languages to sequences of items and contexts in recommender systems. Taking the category information as an items context, we develop a basic coupled and an extended tripled seq2seq translation models to encode the category-item and item-category-item relations between the item and context sequences. We conduct extensive experiments on three real world datasets. The results demonstrate the superior performance of the proposed model compared with the state-of-the-art baselines.
134 - Chuhan Wu , Fangzhao Wu , Tao Qi 2021
News recommendation is often modeled as a sequential recommendation task, which assumes that there are rich short-term dependencies over historical clicked news. However, in news recommendation scenarios users usually have strong preferences on the t emporal diversity of news information and may not tend to click similar news successively, which is very different from many sequential recommendation scenarios such as e-commerce recommendation. In this paper, we study whether news recommendation can be regarded as a standard sequential recommendation problem. Through extensive experiments on two real-world datasets, we find that modeling news recommendation as a sequential recommendation problem is suboptimal. To handle this challenge, we further propose a temporal diversity-aware news recommendation method that can promote candidate news that are diverse from recently clicked news, which can help predict future clicks more accurately. Experiments show that our approach can consistently improve various news recommendation methods.
346 - Mengqi Zhang , Shu Wu , Xueli Yu 2021
Modeling user preference from his historical sequences is one of the core problems of sequential recommendation. Existing methods in this field are widely distributed from conventional methods to deep learning methods. However, most of them only mode l users interests within their own sequences and ignore the dynamic collaborative signals among different user sequences, making it insufficient to explore users preferences. We take inspiration from dynamic graph neural networks to cope with this challenge, modeling the user sequence and dynamic collaborative signals into one framework. We propose a new method named Dynamic Graph Neural Network for Sequential Recommendation (DGSR), which connects different user sequences through a dynamic graph structure, exploring the interactive behavior of users and items with time and order information. Furthermore, we design a Dynamic Graph Recommendation Network to extract users preferences from the dynamic graph. Consequently, the next-item prediction task in sequential recommendation is converted into a link prediction between the user node and the item node in a dynamic graph. Extensive experiments on three public benchmarks show that DGSR outperforms several state-of-the-art methods. Further studies demonstrate the rationality and effectiveness of modeling user sequences through a dynamic graph.
352 - Liping Wang , Fenyu Hu , Shu Wu 2021
Recently, Graph Convolution Network (GCN) based methods have achieved outstanding performance for recommendation. These methods embed users and items in Euclidean space, and perform graph convolution on user-item interaction graphs. However, real-wor ld datasets usually exhibit tree-like hierarchical structures, which make Euclidean space less effective in capturing user-item relationship. In contrast, hyperbolic space, as a continuous analogue of a tree-graph, provides a promising alternative. In this paper, we propose a fully hyperbolic GCN model for recommendation, where all operations are performed in hyperbolic space. Utilizing the advantage of hyperbolic space, our method is able to embed users/items with less distortion and capture user-item interaction relationship more accurately. Extensive experiments on public benchmark datasets show that our method outperforms both Euclidean and hyperbolic counterparts and requires far lower embedding dimensionality to achieve comparable performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا