ﻻ يوجد ملخص باللغة العربية
Sequential recommendation methods play a crucial role in modern recommender systems because of their ability to capture a users dynamic interest from her/his historical interactions. Despite their success, we argue that these approaches usually rely on the sequential prediction task to optimize the huge amounts of parameters. They usually suffer from the data sparsity problem, which makes it difficult for them to learn high-quality user representations. To tackle that, inspired by recent advances of contrastive learning techniques in the computer version, we propose a novel multi-task model called textbf{C}ontrastive textbf{L}earning for textbf{S}equential textbf{Rec}ommendation~(textbf{CL4SRec}). CL4SRec not only takes advantage of the traditional next item prediction task but also utilizes the contrastive learning framework to derive self-supervision signals from the original user behavior sequences. Therefore, it can extract more meaningful user patterns and further encode the user representation effectively. In addition, we propose three data augmentation approaches to construct self-supervision signals. Extensive experiments on four public datasets demonstrate that CL4SRec achieves state-of-the-art performance over existing baselines by inferring better user representations.
Recommending cold-start items is a long-standing and fundamental challenge in recommender systems. Without any historical interaction on cold-start items, CF scheme fails to use collaborative signals to infer user preference on these items. To solve
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data. At their core, such approaches model transition probabilities between items in a sequence, whether
The sequential recommendation aims to recommend items, such as products, songs and places, to users based on the sequential patterns of their historical records. Most existing sequential recommender models consider the next item prediction task as th
Session-based recommendation (SBR) learns users preferences by capturing the short-term and sequential patterns from the evolution of user behaviors. Among the studies in the SBR field, graph-based approaches are a relatively powerful kind of way, wh
In the field of sequential recommendation, deep learning (DL)-based methods have received a lot of attention in the past few years and surpassed traditional models such as Markov chain-based and factorization-based ones. However, there is little syst