ترغب بنشر مسار تعليمي؟ اضغط هنا

Two dark matter candidates: the case of inert doublet and singlet scalars

87   0   0.0 ( 0 )
 نشر من قبل Ali Mjallal
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a multi-component dark matter model where the dark sector contains a scalar doublet and a complex scalar singlet. We impose a discrete $Z_4$ symmetry to ensure such that the lightest component of the doublet, $tilde{A}$, and the singlet, $tilde{S}$, are both stable. Interactions between the dark sectors impact significantly dark matter observables, they allow in particular to significantly relax the direct detection constraints on the model. To determine the parameter space that satisfies relic density, theoretical and collider constraints as well as direct and indirect detection limits, we perform two separate scans, the first includes the full parameter space of the model while the second is dedicated to scenarios with a compressed inert doublet spectrum. In the first case we find that the singlet is generally the dominant dark matter component while in the compressed case the doublet is more likely to be the dominant dark matter component. In both cases we find that the two dark matter particles can have masses that ranges from around $m_h/2$ to over the TeV scale. We emphasize the interplay between cosmological astrophysical and collider constraints and show that a large fraction of the parameter space that escapes current constraints is within the sensitivity reach of future detectors such as XENON-nT, Darwin or CTA. Important collider signatures are mostly found in the compressed spectrum case with the possibility of probing the model with searches for heavy stable charged particles and disappearing tracks. We also show that semi-annihilation processes such as $tilde{S}tilde{S}to tilde{A}Z$ could give the dominant signature in indirect detection searches.

قيم البحث

اقرأ أيضاً

We study a two scalar inert doublet model (IDMS$_3$) which is stabilized by a $S_3$ symmetry. We consider two scenarios: i) two of the scalars in each charged sector are mass degenerated due to a residual $Z_2$ symmetry, ii) there is no mass degenera cy because of the introduction of soft terms that break the $Z_2$ symmetry. We show that both scenarios provide good dark matter candidates for some range of parameters.
The inert doublet model, a minimal extension of the Standard Model by a second higgs doublet with no direct couplings to quarks or leptons, is one of the simplest scenarios that can explain the dark matter. In this paper, we study in detail the impac t of dark matter annihilation into three-body final state on the phenomenology of the inert doublet model. We find that this new annihilation mode dominates, in a relevant portion of the parameter space, over those into two-body final states considered in previous analysis. As a result, the computation of the relic density is modified and the viable regions of the model are displaced. After obtaining the genuine viable regions for different sets of parameters, we compute the direct detection cross section of inert higgs dark matter and find it to be up to two orders of magnitude smaller than what is obtained for two-body final states only. Other implications of these results, including the modification to the decay width of the higgs and to the indirect detection signatures of inert higgs dark matter, are also briefly considered. We demonstrate, therefore, that the annihilation into three-body final state can not be neglected, as it has a important impact on the entire phenomenology of the inert doublet model.
We present a study of singlet-doublet vector-like leptonic dark matter (DM) in the framework of two Higgs doublet model (2HDM), where the dark sector is comprised of one doublet and one singlet vectorlike fermions (VLFs). The DM, that arises as an ad mixture of the neutral components of the VLFs, is stabilized by an imposed discrete symmetry $mathcal{Z}_2^{}$ . We test the viability of the model in the light of observations from PLANCK and recent limits on spin-independent direct detection experiments, and search for its possible collider signals. In addition, we also look for the stochastic gravitational wave (GW) signatures resulting from strong first order phase transition due to the presence of the second Higgs doublet. The model thus offers a viable parameter space for a stable DM candidate that can be probed from direct search, collider and GW experiments.
We perform a comprehensive analysis for the light scalar dark matter (DM)in the Inert two Higgs doublet model (i2HDM) with compressed mass spectra, small mass splittings among three $mathbb{Z}_2$ odd particles---scalar $S$, pseudo-scalar $A$, and cha rged Higgs $H^pm$. In such a case, the co-annihilation processes play a significant role to reduce DM relic density. As long as a co-annihilation governs the total interaction rate in the early universe, a small annihilation rate is expected to reach a correct DM relic density and its coupling $lambda_S$ between DM pair and Higgs boson shall be tiny. Consequently, a negligible DM-nucleon elastic scattering cross section is predicted at the tree-level. In this work, we include the one-loop quantum corrections of the DM-nucleon elastic scattering cross section. We found that the quartic self-coupling $lambda_2$ between $mathbb{Z}_2$ odd particles indeed contributes to the one-loop quantum correction and behaves non-trivially for the co-annihilation scenario. Interestingly, the parameter space, which is allowed by the current constraints considered in this study, can predict the DM mass and annihilation cross section at the present compatible with the AMS-02 antiproton excess. The parameter space can be further probed at the future high luminosity LHC.
We consider a two-Higgs doublet scenario containing three $SU(2)_L$ singlet heavy neutrinos with Majorana masses. The second scalar doublet as well as the neutrinos are odd under a $Z_2$ symmetry. This scenario not only generates Majorana masses for the light neutrinos radiatively but also makes the lighter of the neutral $Z_2$-odd scalars an eligible dark matter candidate, in addition to triggering leptogenesis at the scale of the heavy neutrino masses. Taking two representative values of this mass scale, we identify the allowed regions of the parameter space of the model, which are consistent with all dark matter constraints. At the same time, the running of quartic couplings in the scalar potential to high scales is studied, thus subjecting the regions consistent with dark matter constraints to further requirements of vacuum stability, perturbativity and unitarity. It is found that part of the parameter space is consistent with all of these requirements all the way up to the Planck scale, and also yields the correct signal strength in the diphoton channel for the scalar observed at the Large Hadron Collider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا