ترغب بنشر مسار تعليمي؟ اضغط هنا

Singlet-Doublet Fermionic Dark Matter and Gravitational Wave in Two Higgs Doublet Extension of the Standard Model

78   0   0.0 ( 0 )
 نشر من قبل Basabendu Barman
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of singlet-doublet vector-like leptonic dark matter (DM) in the framework of two Higgs doublet model (2HDM), where the dark sector is comprised of one doublet and one singlet vectorlike fermions (VLFs). The DM, that arises as an admixture of the neutral components of the VLFs, is stabilized by an imposed discrete symmetry $mathcal{Z}_2^{}$ . We test the viability of the model in the light of observations from PLANCK and recent limits on spin-independent direct detection experiments, and search for its possible collider signals. In addition, we also look for the stochastic gravitational wave (GW) signatures resulting from strong first order phase transition due to the presence of the second Higgs doublet. The model thus offers a viable parameter space for a stable DM candidate that can be probed from direct search, collider and GW experiments.

قيم البحث

اقرأ أيضاً

116 - Manoranjan Dutta 2021
A minimal extension of the Standard Model (SM) by a vector-like fermion doublet and three right handed (RH) singlet neutrinos is proposed in order to explain dark matter and tiny neutrino mass simultaneously. The DM arises as a mixture of the neutral component of the fermion doublet and one of the RH neutrinos, both assumed to be odd under an imposed $mathcal{Z}_2$ symmetry. Being Majorana in nature, the DM escapes from $Z$-mediated direct search constraints to mark a significant difference from singlet-doublet Dirac DM. The other two $mathcal{Z}_2$ even heavy RH neutrinos give rise masses and mixing of light neutrinos via Type-I Seesaw mechanism. Relic density and direct search allowed parameter space for the model is investigated through detailed numerical scan.
In the framework of type-II two-Higgs-doublet model with a singlet scalar dark matter $S$, we study the dark matter observables, the electroweak phase transition, and the gravitational wave signals by such strongly first order phase transition after imposing the constraints of the LHC Higgs data. We take the heavy CP-even Higgs $H$ as the only portal between the dark matter and SM sectors, and find the LHC Higgs data and dark matter observables require $m_S$ and $m_H$ to be larger than 130 GeV and 360 GeV for $m_A=600$ GeV in the case of the 125 GeV Higgs with the SM-like coupling. Next, we carve out some parameter space where a strongly first order electroweak phase transition can be achieved, and find benchmark points for which the amplitudes of gravitational wave spectra reach the sensitivities of the future gravitational wave detectors.
We study a fermionic dark matter model in which the interaction of the dark and visible sectors is mediated by Higgs portal type couplings. Specifically, we consider the mixing of a dark sector scalar with the scalars of a Two Higgs Doublet Model ext ension of the Standard Model. Given that scalar exchange will result in a spin-independent dark matter-nucleon scattering cross section, such a model is potentially subject to stringent direct detection constraints. Moreover, the addition of new charged scalars introduce non-trivial flavour constraints. Nonetheless, this model allows more freedom than a standard Higgs portal scenario involving a single Higgs doublet, and much of the interesting parameter space is not well approximated by a Simplified Model with a single scalar mediator. We perform a detailed parameter scan to determine the mass and coupling parameters which satisfy direct detection, flavour, precision electroweak, stability, and perturbativity constraints, while still producing the correct relic density through thermal freezeout.
We study a two scalar inert doublet model (IDMS$_3$) which is stabilized by a $S_3$ symmetry. We consider two scenarios: i) two of the scalars in each charged sector are mass degenerated due to a residual $Z_2$ symmetry, ii) there is no mass degenera cy because of the introduction of soft terms that break the $Z_2$ symmetry. We show that both scenarios provide good dark matter candidates for some range of parameters.
We consider a multi-component dark matter model where the dark sector contains a scalar doublet and a complex scalar singlet. We impose a discrete $Z_4$ symmetry to ensure such that the lightest component of the doublet, $tilde{A}$, and the singlet, $tilde{S}$, are both stable. Interactions between the dark sectors impact significantly dark matter observables, they allow in particular to significantly relax the direct detection constraints on the model. To determine the parameter space that satisfies relic density, theoretical and collider constraints as well as direct and indirect detection limits, we perform two separate scans, the first includes the full parameter space of the model while the second is dedicated to scenarios with a compressed inert doublet spectrum. In the first case we find that the singlet is generally the dominant dark matter component while in the compressed case the doublet is more likely to be the dominant dark matter component. In both cases we find that the two dark matter particles can have masses that ranges from around $m_h/2$ to over the TeV scale. We emphasize the interplay between cosmological astrophysical and collider constraints and show that a large fraction of the parameter space that escapes current constraints is within the sensitivity reach of future detectors such as XENON-nT, Darwin or CTA. Important collider signatures are mostly found in the compressed spectrum case with the possibility of probing the model with searches for heavy stable charged particles and disappearing tracks. We also show that semi-annihilation processes such as $tilde{S}tilde{S}to tilde{A}Z$ could give the dominant signature in indirect detection searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا