ﻻ يوجد ملخص باللغة العربية
Finding out root patterns of quantum integrable models is an important step to study their physical properties in the thermodynamic limit. Especially for models without $U(1)$ symmetry, their spectra are usually given by inhomogeneous $T-Q$ relations and the Bethe root patterns are still unclear. In this paper with the antiperiodic $XXZ$ spin chain as an example, an analytic method to derive both the Bethe root patterns and the transfer-matrix root patterns in the thermodynamic limit is proposed. Based on them the ground state energy and elementary excitations in the gapped regime are derived. The present method provides an universal procedure to compute physical properties of quantum integrable models in the thermodynamic limit.
We investigate the thermodynamic limit of the inhomogeneous T-Q relation of the antiferromagnetic XXZ spin chain with antiperiodic boundary condition. It is shown that the contribution of the inhomogeneous term at the ground state can be neglected wh
Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, the Bethe-type eigenstates of the XXZ spin-1/2 chain with arbitrary boundary fields are constructed. It is found that by employing two sets of gauge transformation
An orthogonal basis of the Hilbert space for the quantum spin chain associated with the su(3) algebra is introduced. Such kind of basis could be treated as a nested generalization of separation of variables (SoV) basis for high-rank quantum integrabl
The off-diagonal Bethe ansatz method is generalized to the integrable model associated with the $sp(4)$ (or $C_2$) Lie algebra. By using the fusion technique, we obtain the complete operator product identities among the fused transfer matrices. These
Based on the inhomogeneous T-Q relation and the associated Bethe Ansatz equations obtained via the off-diagonal Bethe Ansatz, we construct the Bethe-type eigenstates of the SU(2)-invariant spin-s chain with generic non-diagonal boundaries by employing certain orthogonal basis of the Hilbert space.