ﻻ يوجد ملخص باللغة العربية
The different magnetic behaviors of LaCoO$_3$ films grown on LaAlO$_3$ and SrTiO$_3$ are related to the Co-O-Co bond angles and the constraints imposed on the Co-O bond lengths by the substrate geometries. Long-range magnetic order occurs below T ~ 90 K when the Co-O-Co bond angle is greater than 163 degrees, consistent with the behavior of bulk and nanoparticles forms of LaCoO$_3$. A LaAlO$_3$ substrate prevents magnetic long-range order at low temperatures near the film-substrate interface and collinear antiferromagnetic sublattices away from the interface. At low temperatures, the antiferromagnetically ordered sublattices are non-collinear in films grown on SrTiO$_3$ substrates, leading to a significant net moment.
The spin states of Co$^{3+}$ ions in perovskite-type LaCoO$_3$, governed by complex interplay between the electron-lattice interactions and the strong electron correlations, still remain controversial due to the lack of experimental techniques which
We study ferromagnetic ordering and microscopic inhomogeneity in tensile strained LaCoO$_3$ using numerical simulations. We argue that both phenomena originate from effective superexchange interactions between atoms in the high-spin (HS) state mediat
The effect of high tensile strain and low dimensionality on the magnetic and electronic properties of CaMnO$_3$ ultrathin films, epitaxially grown on SrTiO$_3$ substrates, are experimentally studied and theoretically analyzed. By means of ab initio c
Atomistic defect engineering through the pulsed laser epitaxy of perovskite transition metal oxides offers facile control of their emergent opto-electromagnetic and energy properties. Among the various perovskite oxides, EuTiO3 exhibits a strong coup
Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process by varying the relative nitrogen gas flow (pn) are studied in this work. As pn~increases, Co(N), tcn, Co$_3$N and CoN phases are formed. An incremental increase i