ترغب بنشر مسار تعليمي؟ اضغط هنا

Activity Recognition for Autism Diagnosis

70   0   0.0 ( 0 )
 نشر من قبل Anish Lakkapragada
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A formal autism diagnosis is an inefficient and lengthy process. Families often have to wait years before receiving a diagnosis for their child; some may not receive one at all due to this delay. One approach to this problem is to use digital technologies to detect the presence of behaviors related to autism, which in aggregate may lead to remote and automated diagnostics. One of the strongest indicators of autism is stimming, which is a set of repetitive, self-stimulatory behaviors such as hand flapping, headbanging, and spinning. Using computer vision to detect hand flapping is especially difficult due to the sparsity of public training data in this space and excessive shakiness and motion in such data. Our work demonstrates a novel method that overcomes these issues: we use hand landmark detection over time as a feature representation which is then fed into a Long Short-Term Memory (LSTM) model. We achieve a validation accuracy and F1 Score of about 72% on detecting whether videos from the Self-Stimulatory Behaviour Dataset (SSBD) contain hand flapping or not. Our best model also predicts accurately on external videos we recorded of ourselves outside of the dataset it was trained on. This model uses less than 26,000 parameters, providing promise for fast deployment into ubiquitous and wearable digital settings for a remote autism diagnosis.



قيم البحث

اقرأ أيضاً

Rather than simply recognizing the action of a person individually, collective activity recognition aims to find out what a group of people is acting in a collective scene. Previ- ous state-of-the-art methods using hand-crafted potentials in conventi onal graphical model which can only define a limited range of relations. Thus, the complex structural de- pendencies among individuals involved in a collective sce- nario cannot be fully modeled. In this paper, we overcome these limitations by embedding latent variables into feature space and learning the feature mapping functions in a deep learning framework. The embeddings of latent variables build a global relation containing person-group interac- tions and richer contextual information by jointly modeling broader range of individuals. Besides, we assemble atten- tion mechanism during embedding for achieving more com- pact representations. We evaluate our method on three col- lective activity datasets, where we contribute a much larger dataset in this work. The proposed model has achieved clearly better performance as compared to the state-of-the- art methods in our experiments.
In this paper we address the task of recognizing assembly actions as a structure (e.g. a piece of furniture or a toy block tower) is built up from a set of primitive objects. Recognizing the full range of assembly actions requires perception at a lev el of spatial detail that has not been attempted in the action recognition literature to date. We extend the fine-grained activity recognition setting to address the task of assembly action recognition in its full generality by unifying assembly actions and kinematic structures within a single framework. We use this framework to develop a general method for recognizing assembly actions from observation sequences, along with observation features that take advantage of a spatial assemblys special structure. Finally, we evaluate our method empirically on two application-driven data sources: (1) An IKEA furniture-assembly dataset, and (2) A block-building dataset. On the first, our system recognizes assembly actions with an average framewise accuracy of 70% and an average normalized edit distance of 10%. On the second, which requires fine-grained geometric reasoning to distinguish between assemblies, our system attains an average normalized edit distance of 23% -- a relative improvement of 69% over prior work.
Accelerometer-based (and by extension other inertial sensors) research for Human Activity Recognition (HAR) is a dead-end. This sensor does not offer enough information for us to progress in the core domain of HAR - to recognize everyday activities f rom sensor data. Despite continued and prolonged efforts in improving feature engineering and machine learning models, the activities that we can recognize reliably have only expanded slightly and many of the same flaws of early models are still present today. Instead of relying on acceleration data, we should instead consider modalities with much richer information - a logical choice are images. With the rapid advance in image sensing hardware and modelling techniques, we believe that a widespread adoption of image sensors will open many opportunities for accurate and robust inference across a wide spectrum of human activities. In this paper, we make the case for imagers in place of accelerometers as the default sensor for human activity recognition. Our review of past works has led to the observation that progress in HAR had stalled, caused by our reliance on accelerometers. We further argue for the suitability of images for activity recognition by illustrating their richness of information and the marked progress in computer vision. Through a feasibility analysis, we find that deploying imagers and CNNs on device poses no substantial burden on modern mobile hardware. Overall, our work highlights the need to move away from accelerometers and calls for further exploration of using imagers for activity recognition.
Deep learning models for human activity recognition (HAR) based on sensor data have been heavily studied recently. However, the generalization ability of deep models on complex real-world HAR data is limited by the availability of high-quality labele d activity data, which are hard to obtain. In this paper, we design a similarity embedding neural network that maps input sensor signals onto real vectors through carefully designed convolutional and LSTM layers. The embedding network is trained with a pairwise similarity loss, encouraging the clustering of samples from the same class in the embedded real space, and can be effectively trained on a small dataset and even on a noisy dataset with mislabeled samples. Based on the learned embeddings, we further propose both nonparametric and parametric approaches for activity recognition. Extensive evaluation based on two public datasets has shown that the proposed similarity embedding network significantly outperforms state-of-the-art deep models on HAR classification tasks, is robust to mislabeled samples in the training set, and can also be used to effectively denoise a noisy dataset.
This work is about recognizing human activities occurring in videos at distinct semantic levels, including individual actions, interactions, and group activities. The recognition is realized using a two-level hierarchy of Long Short-Term Memory (LSTM ) networks, forming a feed-forward deep architecture, which can be trained end-to-end. In comparison with existing architectures of LSTMs, we make two key contributions giving the name to our approach as Confidence-Energy Recurrent Network -- CERN. First, instead of using the common softmax layer for prediction, we specify a novel energy layer (EL) for estimating the energy of our predictions. Second, rather than finding the common minimum-energy class assignment, which may be numerically unstable under uncertainty, we specify that the EL additionally computes the p-values of the solutions, and in this way estimates the most confident energy minimum. The evaluation on the Collective Activity and Volleyball datasets demonstrates: (i) advantages of our two contributions relative to the common softmax and energy-minimization formulations and (ii) a superior performance relative to the state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا