ترغب بنشر مسار تعليمي؟ اضغط هنا

Modulating Language Models with Emotions

128   0   0.0 ( 0 )
 نشر من قبل Soroush Vosoughi Dr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating context-aware language that embodies diverse emotions is an important step towards building empathetic NLP systems. In this paper, we propose a formulation of modulated layer normalization -- a technique inspired by computer vision -- that allows us to use large-scale language models for emotional response generation. In automatic and human evaluation on the MojiTalk dataset, our proposed modulated layer normalization method outperforms prior baseline methods while maintaining diversity, fluency, and coherence. Our method also obtains competitive performance even when using only 10% of the available training data.

قيم البحث

اقرأ أيضاً

Pre-trained language models have been successful on text classification tasks, but are prone to learning spurious correlations from biased datasets, and are thus vulnerable when making inferences in a new domain. Prior works reveal such spurious patt erns via post-hoc explanation algorithms which compute the importance of input features. Further, the model is regularized to align the importance scores with human knowledge, so that the unintended model behaviors are eliminated. However, such a regularization technique lacks flexibility and coverage, since only importance scores towards a pre-defined list of features are adjusted, while more complex human knowledge such as feature interaction and pattern generalization can hardly be incorporated. In this work, we propose to refine a learned language model for a target domain by collecting human-provided compositional explanations regarding observed biases. By parsing these explanations into executable logic rules, the human-specified refinement advice from a small set of explanations can be generalized to more training examples. We additionally introduce a regularization term allowing adjustments for both importance and interaction of features to better rectify model behavior. We demonstrate the effectiveness of the proposed approach on two text classification tasks by showing improved performance in target domain as well as improved model fairness after refinement.
To obtain high-quality sentence embeddings from pretrained language models (PLMs), they must either be augmented with additional pretraining objectives or finetuned on a large set of labeled text pairs. While the latter approach typically outperforms the former, it requires great human effort to generate suitable datasets of sufficient size. In this paper, we show how large PLMs can be leveraged to obtain high-quality embeddings without requiring any labeled data, finetuning or modifications to the pretraining objective: We utilize the generative abilities of PLMs to generate entire datasets of labeled text pairs from scratch, which can then be used for regular finetuning of much smaller models. Our fully unsupervised approach outperforms strong baselines on several English semantic textual similarity datasets.
Pretrained language models (LMs) perform well on many tasks even when learning from a few examples, but prior work uses many held-out examples to tune various aspects of learning, such as hyperparameters, training objectives, and natural language tem plates (prompts). Here, we evaluate the few-shot ability of LMs when such held-out examples are unavailable, a setting we call true few-shot learning. We test two model selection criteria, cross-validation and minimum description length, for choosing LM prompts and hyperparameters in the true few-shot setting. On average, both marginally outperform random selection and greatly underperform selection based on held-out examples. Moreover, selection criteria often prefer models that perform significantly worse than randomly-selected ones. We find similar results even when taking into account our uncertainty in a models true performance during selection, as well as when varying the amount of computation and number of examples used for selection. Overall, our findings suggest that prior work significantly overestimated the true few-shot ability of LMs given the difficulty of few-shot model selection.
Language models are at the heart of numerous works, notably in the text mining and information retrieval communities. These statistical models aim at extracting word distributions, from simple unigram models to recurrent approaches with latent variab les that capture subtle dependencies in texts. However, those models are learned from word sequences only, and authors identities, as well as publication dates, are seldom considered. We propose a neural model, based on recurrent language modeling, which aims at capturing language diffusion tendencies in author communities through time. By conditioning language models with author and temporal vector states, we are able to leverage the latent dependencies between the text contexts. This allows us to beat several temporal and non-temporal language baselines on two real-world corpora, and to learn meaningful author representations that vary through time.
We propose an extension to neural network language models to adapt their prediction to the recent history. Our model is a simplified version of memory augmented networks, which stores past hidden activations as memory and accesses them through a dot product with the current hidden activation. This mechanism is very efficient and scales to very large memory sizes. We also draw a link between the use of external memory in neural network and cache models used with count based language models. We demonstrate on several language model datasets that our approach performs significantly better than recent memory augmented networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا