ﻻ يوجد ملخص باللغة العربية
We point out little discussed phenomenon in elementary quantum mechanics. In one-dimensional potential scattering problems, the scattering amplitudes are not uniquely determined at special points in parameter space. We examine a few explicit examples. We also discuss the relation with the pole-skipping phenomena recently found in holographic duality. In the holographic pole-skipping, the retarded Greens functions are not uniquely determined at imaginary Matsubara frequencies. It turns out that this universality comes from the fact that the corresponding potential scattering problem has the angular momentum potential.
We investigate a new property of retarded Greens functions using AdS/CFT. The Greens functions are not unique at special points in complex momentum space. This arises because there is no unique incoming mode at the horizon and is similar to the pole-
We present the analytic form of the two-loop four-graviton scattering amplitudes in Einstein gravity. To remove ultraviolet divergences we include counterterms quadratic and cubic in the Riemann curvature tensor. The two-loop numerical unitarity appr
We present an identity satisfied by the kinematic factors of diagrams describing the tree amplitudes of massless gauge theories. This identity is a kinematic analog of the Jacobi identity for color factors. Using this we find new relations between co
We present a general framework with which the Schwarzschild-Tangherlini metric of a point particle in arbitrary dimensions can be derived from a scattering amplitude to all orders in the gravitational constant, $G_N$, in covariant gauge (i.e. $R_xi$-
Amplitude methods have proven to be a promising technique to perform Post-Minkowskian calculations used as inputs to construct gravitational waveforms. In this paper, we show how these methods can be extended beyond the standard calculations in Gener