ﻻ يوجد ملخص باللغة العربية
Harnessing power-law interactions ($1/r^alpha$) in a large variety of physical systems are increasing. We study the dynamics of chiral spin chains as a possible multi-directional quantum channel. This arises from the nonlinear character of the dispersion with complex quantum interference effects. Using complementary numerically and analytical techniques, we engineer models to transfer quantum states. We illustrate our approach using the long-range XXZ model modulated by Dzyaloshinskii-Moriya (DM) interaction. With exploring non-equilibrium dynamics after a local quantum quench, we identify at fully nonlocal regime (which breaks generalized Lieb-Robinson bounds ) the interplay of interaction range $alpha$ and Dzyaloshinskii-Moriya coupling gives rise to spatially asymmetric spin excitations transport. This could be interesting for quantum information protocols to transfer quantum states and maybe testable with current trapped-ion experiments. We further explore the growth of block entanglement entropy in these systems and the order of magnitude reduction distinguished. A possible effective interaction induces by DM coupling and integrability breaking in these systems is discussed.
Using a numerically exact technique we study spin transport and the evolution of spin-density excitation profiles in a disordered spin-chain with long-range interactions, decaying as a power-law, $r^{-alpha}$ with distance and $alpha<2$. Our study co
We study the quasiparticle excitation and quench dynamics of the one-dimensional transverse-field Ising model with power-law ($1/r^{alpha}$) interactions. We find that long-range interactions give rise to a confining potential, which couples pairs of
We numerically study spin transport and nonequilibrium spin-density profiles in a clean one-dimensional spin-chain with long-range interactions, decaying as a power-law,$r^{-alpha}$ with distance. We find two distinct regimes of transport: for $alpha
We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two type
We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our appro