ﻻ يوجد ملخص باللغة العربية
With the strength of deep generative models, 3D pose transfer regains intensive research interests in recent years. Existing methods mainly rely on a variety of constraints to achieve the pose transfer over 3D meshes, e.g., the need for manually encoding for shape and pose disentanglement. In this paper, we present an unsupervised approach to conduct the pose transfer between any arbitrate given 3D meshes. Specifically, a novel Intrinsic-Extrinsic Preserved Generative Adversarial Network (IEP-GAN) is presented for both intrinsic (i.e., shape) and extrinsic (i.e., pose) information preservation. Extrinsically, we propose a co-occurrence discriminator to capture the structural/pose invariance from distinct Laplacians of the mesh. Meanwhile, intrinsically, a local intrinsic-preserved loss is introduced to preserve the geodesic priors while avoiding heavy computations. At last, we show the possibility of using IEP-GAN to manipulate 3D human meshes in various ways, including pose transfer, identity swapping and pose interpolation with latent code vector arithmetic. The extensive experiments on various 3D datasets of humans, animals and hands qualitatively and quantitatively demonstrate the generality of our approach. Our proposed model produces better results and is substantially more efficient compared to recent state-of-the-art methods. Code is available: https://github.com/mikecheninoulu/Unsupervised_IEPGAN
Previous work has shown that adversarial learning can be used for unsupervised monocular depth and visual odometry (VO) estimation, in which the adversarial loss and the geometric image reconstruction loss are utilized as the mainly supervisory signa
Modern 3D human pose estimation techniques rely on deep networks, which require large amounts of training data. While weakly-supervised methods require less supervision, by utilizing 2D poses or multi-view imagery without annotations, they still need
We present a novel methodology to detect imperfect bilateral symmetry in CT of human anatomy. In this paper, the structurally symmetric nature of the pelvic bone is explored and is used to provide interventional image augmentation for treatment of un
In the presence of annotated data, deep human pose estimation networks yield impressive performance. Nevertheless, annotating new data is extremely time-consuming, particularly in real-world conditions. Here, we address this by leveraging contrastive
We propose a novel method based on teacher-student learning framework for 3D human pose estimation without any 3D annotation or side information. To solve this unsupervised-learning problem, the teacher network adopts pose-dictionary-based modeling f