ﻻ يوجد ملخص باللغة العربية
According to energy band theory, ground states of a normal conductor and insulator can be obtained by filling electrons individually into energy levels, without any restrictions. It fails when the electron-electron correlation is taken into account. In this work, we investigate dynamic process of building ground states of a Hubbard model. It bases on time-ordered quantum quenches for unidirectional hopping across a central and an auxiliary Hubbard models. We find that there exists a set of optimal parameters (chemical potentials and pair binding energy) for the auxiliary system, which takes the role of electron pair-reservoir. The exceptional dynamics allows the perfect transfer of electron pair from the reservoir to the central system, obtaining its ground states at different fillings. The dynamics of time-ordered pair-filling not only provides a method for correlated quantum state engineering, but also reveals the feature of the ground state in an alternative way.
We discuss the signatures of a Kramers pair of Majorana modes formed in a Josephson junction on top of a quantum spin Hall system. We show that, while ignoring interactions on the quantum spin Hall edge allows arbitrary Andreev process in the system,
In the first part of this paper, we study the spin-S Kitaev model using spin wave theory. We discover a remarkable geometry of the minimum energy surface in the N-spin space. The classical ground states, called Cartesian or CN-ground states, whose nu
We investigate the possibility to control dynamically the interactions between repulsively bound pairs of fermions (doublons) in correlated systems with off-resonant ac fields. We introduce an effective Hamiltonian that describes the physics of doubl
Under the action of coherent periodic driving a generic quantum system will undergo Floquet heating and continously absorb energy until it reaches a featureless thermal state. The phase-space constraints induced by certain symmetries can, however, pr
The introduction of non-Hermiticity has greatly enriched the research field of traditional condensed matter physics, and eventually led to a series of discoveries of exotic phenomena. We investigate the effect of non-Hermitian imaginary hoppings on t