ترغب بنشر مسار تعليمي؟ اضغط هنا

A Spectroscopic Study of Supernova Remnants with the Infrared Space Observatory

58   0   0.0 ( 0 )
 نشر من قبل Matthew Millard
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present far-infrared (FIR) spectroscopy of supernova remnants (SNRs) based on the archival data of the Infrared Space Observatory ($ISO$) taken with the Long Wavelength Spectrometer (LWS). Our sample includes previously unpublished profiles of line and continuum spectra for 20 SNRs in the Galaxy and Magellanic Clouds. In several SNRs including G21.5-0.9, G29.7-0.3, the Crab Nebula, and G320.4-1.2, we find evidence for broad [O I], [O III], [N II], and [C II] lines with velocity dispersions up to a few 10$^3$ km s$^{-1}$, indicating that they are associated with high-velocity SN ejecta. Our detection of Doppler-broadened atomic emission lines and a bright FIR continuum hints at the presence of newly formed dust in SN ejecta. For G320.4-1.2, we present the first estimate of an ejecta-dust mass of 0.1 - 0.2 M$_odot$, which spatially coincides with the broad line emission, by applying a blackbody model fit with components of the SNR and background emission. Our sample includes raster maps of 63, 145 $mu$m [O I] and 158 $mu$m [C II] lines toward SNRs Kes 79, CTB 109, and IC 443. Based on these line intensities, we suggest interacting shock types in these SNRs. Finally, we compare our LWS spectra of our sample SNRs with the spectra of several HII regions, and discuss their FIR line intensity ratios and continuum properties. Follow-up observations with modern instruments (e.g. $JWST$ and $SOFIA$) with higher spatial and spectral resolution are encouraged for an extensive study of the SN ejecta and the SN dust.

قيم البحث

اقرأ أيضاً

We have carried out high-resolution near-infrared spectroscopic observations toward 16 Galactic supernova remnants (SNRs) showing strong H$_{2}$ emission features. A dozen bright H$_{2}$ emission lines are clearly detected for individual SNRs, and we have measured their central velocities, line widths, and fluxes. For all SNRs except one (G9.9$-$0.8), the H$_{2}$ line ratios are well consistent with that of thermal excitation at $Tsim2000$ K, indicating that the H$_{2}$ emission lines are most likely from shock-excited gas and therefore that they are physically associated with the remnants. The kinematic distances to the 15 SNRs are derived from the central velocities of the H$_{2}$ lines using a Galactic rotation model. We derive for the first time the kinematic distances to four SNRs: G13.5$+$0.2, G16.0$-$0.5, G32.1$-$0.9, and G33.2$-$0.6. Among the remaining 11 SNRs, the central velocities of the H$_{2}$ emission lines for six SNRs are well consistent ($pm5$ km s$^{-1}$) with those obtained in previous radio observations, while for the other five SNRs (G18.1$-$0.1, G18.9$-$1.1, Kes 69, 3C 396, W49B) they are significantly different. We discuss the velocity discrepancies in these five SNRs. In G9.9$-$0.8, the H$_{2}$ emission shows nonthermal line ratios and narrow line width ($sim 4$ km s$^{-1}$), and we discuss its origin.
Using Infrared Array Camera (IRAC) images at 3.6, 4.5, 5.8, and 8 microns from the GLIMPSE Legacy science program on the Spitzer Space Telescope, we searched for infrared counterparts to the 95 known supernova remnants that are located within galacti c longitudes 65>|l|>10 degrees and latitudes |b|<1 degree. Eighteen infrared counterparts were detected. Many other supernova remnants could have significant infrared emission but are in portions of the Milky Way too confused to allow separation from bright HII regions and pervasive mid-infrared emission from atomic and molecular clouds along the line of sight. Infrared emission from supernova remnants originates from synchrotron emission, shock-heated dust, atomic fine-structure lines, and molecular lines. The detected remnants are G11.2-0.3, Kes 69, G22.7-0.2, 3C 391, W 44, 3C 396, 3C 397, W 49B, G54.4-0.3, Kes 17, Kes 20A, RCW 103, G344.7-0.1, G346.6-0.2, CTB 37A, G348.5-0.0, and G349.7+0.2. The infrared colors suggest emission from molecular lines (9 remnants), fine-structure lines (3), and PAH (4), or a combination; some remnants feature multiple colors in different regions. None of the remnants are dominated by synchrotron radiation at mid-infrared wavelengths. The IRAC-detected sample emphasizes remnants interacting with relatively dense gas, for which most of the shock cooling occurs through molecular or ionic lines in the mid-infrared.
We report the results from a spectrophotometric study sampling the roughly 300 candidate supernova remnants (SNRs) in M83 identified through optical imaging with Magellan/IMACS and HST/WFC3. Of the 118 candidates identified based on a high [S II] $la mbdalambda$ 6716,6731 to H$alpha$ emission ratio, 117 show spectroscopic signatures of shock-heated gas, confirming them as SNRs---the largest uniform set of SNR spectra for any galaxy. Spectra of 22 objects with a high [O III] 5007 $lambda$ to H$alpha$ emission ratio, selected in an attempt to identify young ejecta-dominated SNRs like Cas A, reveal only one (previously reported) object with the broad (over 1000 km/s) emission lines characteristic of ejecta-dominated SNRs, beyond the known SN1957D remnant. The other 20 [O III]-selected candidates include planetary nebulae, compact H II regions, and one background QSO. Although our spectroscopic sample includes 22 SNRs smaller than 11 pc, none of the other objects shows broad emission lines; instead their spectra stem from relatively slow (< 200 km/s) radiative shocks propagating into the metal-rich interstellar medium of M83. With six SNe in the past century, one might expect more of M83s small-diameter SNRs to show evidence of ejecta; this appears not to be the case. We attribute their absence to several factors, including that SNRs expanding into a dense medium evolve quickly to the ISM-dominated phase, and that SNRs expanding into regions already evacuated by earlier SNe are probably very faint.
We report the detection of near-infrared (NIR) [Fe II] (1.644 $mu$m) and H$_{2}$ 1-0 S(1) (2.122 $mu$m) line features associated with Galactic supernova remnants (SNRs) in the first quadrant using two narrowband imaging surveys, UWIFE and UWISH2. Amo ng the total of 79 SNRs fully covered by both surveys, we found 19 [Fe II]-emitting and 19 H$_{2}$-emitting SNRs, giving a detection rate of 24% for each. Eleven SNRs show both emission features. The detection rate of [Fe II] and H$_{2}$ peaks at the Galactic longitude ($l$) of $40^{circ}$-$50^{circ}$ and $30^{circ}$-$40^{circ}$, respectively, and gradually decreases toward smaller/larger $l$. Five out of the eleven SNRs emitting both emission lines clearly show an [Fe II]-H$_{2}$ reversal, where H$_{2}$ emission features are found outside the SNR boundary in [Fe II] emission. Our NIR spectroscopy shows that the H$_{2}$ emission originates from collisionally excited H$_{2}$ gas. The brightest SNR in both [Fe II] and H$_{2}$ emissions is W49B, contributing more than 70% and 50% of the total [Fe II] 1.644 $mu$m ($2.0 times 10^4$ L$_{odot}$) and H$_{2}$ 2.122 $mu$m ($1.2 times 10^3$ L$_{odot}$) luminosities of the detected SNRs. The total [Fe II] 1.644 $mu$m luminosity of our Galaxy is a few times smaller than that expected from the SN rate using the correlation found in nearby starburst galaxies. We discuss possible explanations for this.
We search for far-infrared (FIR) counterparts of known supernova remnants (SNRs) in the Galactic plane (360 degrees in longitude and b = +/- 1 deg ) at 70 - 500 micron with Herschel. We detect dust signatures in 39 SNRs out of 190, made up of 13 core -collapse supernovae (CCSNe), including 4 Pulsar Wind Nebulae (PWNe), and 2 Type Ia SNe. A further 24 FIR detected SNRs have unknown types. We confirm the FIR detection of ejecta dust within G350.1-0.3, adding to the known sample of ~10 SNRs containing ejecta dust. We discover dust features at the location of a radio core at the centre of G351.2+0.1, indicating FIR emission coincident with a possible Crab-like compact object, with dust temperature and mass of Td = 45.8 K and Md = 0.18 solar mass, similar to the PWN G54.1+0.3. We show that the detection rate is higher among young SNRs. We produce dust temperature maps of 11 SNRs and mass maps of those with distance estimates, finding dust at temperatures 15 < Td < 40 K. If the dust is heated by shock interactions the shocked gas must be relatively cool and/or have a low density to explain the observed low grain temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا