ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution Near-infrared Spectroscopic Study of Galactic Supernova Remnants. I. Kinematic Distances

90   0   0.0 ( 0 )
 نشر من قبل Yong-Hyun Lee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out high-resolution near-infrared spectroscopic observations toward 16 Galactic supernova remnants (SNRs) showing strong H$_{2}$ emission features. A dozen bright H$_{2}$ emission lines are clearly detected for individual SNRs, and we have measured their central velocities, line widths, and fluxes. For all SNRs except one (G9.9$-$0.8), the H$_{2}$ line ratios are well consistent with that of thermal excitation at $Tsim2000$ K, indicating that the H$_{2}$ emission lines are most likely from shock-excited gas and therefore that they are physically associated with the remnants. The kinematic distances to the 15 SNRs are derived from the central velocities of the H$_{2}$ lines using a Galactic rotation model. We derive for the first time the kinematic distances to four SNRs: G13.5$+$0.2, G16.0$-$0.5, G32.1$-$0.9, and G33.2$-$0.6. Among the remaining 11 SNRs, the central velocities of the H$_{2}$ emission lines for six SNRs are well consistent ($pm5$ km s$^{-1}$) with those obtained in previous radio observations, while for the other five SNRs (G18.1$-$0.1, G18.9$-$1.1, Kes 69, 3C 396, W49B) they are significantly different. We discuss the velocity discrepancies in these five SNRs. In G9.9$-$0.8, the H$_{2}$ emission shows nonthermal line ratios and narrow line width ($sim 4$ km s$^{-1}$), and we discuss its origin.



قيم البحث

اقرأ أيضاً

We present far-infrared (FIR) spectroscopy of supernova remnants (SNRs) based on the archival data of the Infrared Space Observatory ($ISO$) taken with the Long Wavelength Spectrometer (LWS). Our sample includes previously unpublished profiles of lin e and continuum spectra for 20 SNRs in the Galaxy and Magellanic Clouds. In several SNRs including G21.5-0.9, G29.7-0.3, the Crab Nebula, and G320.4-1.2, we find evidence for broad [O I], [O III], [N II], and [C II] lines with velocity dispersions up to a few 10$^3$ km s$^{-1}$, indicating that they are associated with high-velocity SN ejecta. Our detection of Doppler-broadened atomic emission lines and a bright FIR continuum hints at the presence of newly formed dust in SN ejecta. For G320.4-1.2, we present the first estimate of an ejecta-dust mass of 0.1 - 0.2 M$_odot$, which spatially coincides with the broad line emission, by applying a blackbody model fit with components of the SNR and background emission. Our sample includes raster maps of 63, 145 $mu$m [O I] and 158 $mu$m [C II] lines toward SNRs Kes 79, CTB 109, and IC 443. Based on these line intensities, we suggest interacting shock types in these SNRs. Finally, we compare our LWS spectra of our sample SNRs with the spectra of several HII regions, and discuss their FIR line intensity ratios and continuum properties. Follow-up observations with modern instruments (e.g. $JWST$ and $SOFIA$) with higher spatial and spectral resolution are encouraged for an extensive study of the SN ejecta and the SN dust.
We report the detection of near-infrared (NIR) [Fe II] (1.644 $mu$m) and H$_{2}$ 1-0 S(1) (2.122 $mu$m) line features associated with Galactic supernova remnants (SNRs) in the first quadrant using two narrowband imaging surveys, UWIFE and UWISH2. Amo ng the total of 79 SNRs fully covered by both surveys, we found 19 [Fe II]-emitting and 19 H$_{2}$-emitting SNRs, giving a detection rate of 24% for each. Eleven SNRs show both emission features. The detection rate of [Fe II] and H$_{2}$ peaks at the Galactic longitude ($l$) of $40^{circ}$-$50^{circ}$ and $30^{circ}$-$40^{circ}$, respectively, and gradually decreases toward smaller/larger $l$. Five out of the eleven SNRs emitting both emission lines clearly show an [Fe II]-H$_{2}$ reversal, where H$_{2}$ emission features are found outside the SNR boundary in [Fe II] emission. Our NIR spectroscopy shows that the H$_{2}$ emission originates from collisionally excited H$_{2}$ gas. The brightest SNR in both [Fe II] and H$_{2}$ emissions is W49B, contributing more than 70% and 50% of the total [Fe II] 1.644 $mu$m ($2.0 times 10^4$ L$_{odot}$) and H$_{2}$ 2.122 $mu$m ($1.2 times 10^3$ L$_{odot}$) luminosities of the detected SNRs. The total [Fe II] 1.644 $mu$m luminosity of our Galaxy is a few times smaller than that expected from the SN rate using the correlation found in nearby starburst galaxies. We discuss possible explanations for this.
291 - S. S. Shan , H. Zhu , W. W. Tian 2018
We carry out a project to independently measure the distances of supernova remnants (SNRs) in the first quadrant of the Galaxy. In this project, red clump (RC) stars are used as standard candles and extinction probes to build the optical extinction ( A$_V$) - distance(D) relation in each direction of extinction-known SNRs. 15 SNRs distances are well determined. Among them, the distances of G65.8-0.5, G66.0-0.0 and G67.6+0.9 are given for the first time. We also obtain 32 upper/lower limits of distances, and the distances to G5.7-0.1, G15.1-1.6, G28.8+1.5 and G78.2+2.1 are constrained. Most of the distances measured by the RC method are consistent with previous results. The RC method provides an independent access to the distances of SNRs.
105 - S. Ranasinghe , D.A. Leahy 2018
We carry out a comprehensive study of HI 21 cm line observations and $^{13}$CO line observations of 21 supernova remnants (SNRs). The aim of the study is to search for HI absorption features to obtain kinematic distances in a consistent manner. The 2 1 SNRs are in the region of sky covered by the Very Large Array Galactic Plane Survey (HI 21 cm observations) and Galactic Ring Survey ($^{13}$CO line observations). We obtain revised distances for 10 SNRs based on new evidence in the HI and $^{13}$CO observations. We revise distances for the other 11 SNRs based on an updated rotation curve and new error analysis. The mean change in distance for the 21 SNRs is $simeq25%$, i.e. change of 1.5 kpc compared to a mean distance for the sample of 6.4 kpc. This has a significant impact on interpretation of the physical state of these SNRs. For example, using a Sedov model, age and explosion energy scale as the square of distance, and inferred ISM density scales as distance.
We study a sample of 17 z>1.5 absorbers selected based on the presence of strong CI absorption lines in SDSS spectra and observed with the ESO-VLT spectrograph X-shooter. We derive metallicities, depletion onto dust, and extinction by dust, and analy se the absorption from MgII, MgI, CaII and NaI that are redshifted into the near infrared wavelength range. We show that most of these CI absorbers have high metallicity and dust content. We detect nine CaII absorptions with $W$(CaII$lambda$3934) >0.23 AA out of 14 systems where we have appropriate wavelength coverage. The observed equivalent widths are similar to what has been measured in other lower redshift surveys of CaII systems. We detect ten NaI absorptions in the 11 systems where we could observe this absorption. The median equivalent width ($W$(NaI$lambda$5891) = 0.68 AA) is larger than what is observed in local clouds with similar HI column densities but also in z<0.7 CaII systems detected in the SDSS. The systematic presence of NaI absorption in these CI systems strongly suggests that the gas is neutral and cold, maybe part of the diffuse molecular gas in the ISM of high-redshift galaxies. Most of the systems (12 out of 17) have $W$(MgII$lambda$2796) > 2.5 AA and six of them have log N(HI) < 20.3, with the extreme case of J1341+1852 that has log N(HI) = 18.18. The MgII absorptions are spread over more than $Delta v$ $sim$ 400 km s$^{-1}$ for half of the systems; three absorbers have $Delta v$ > 500 km s$^{-1}$. The kinematics are strongly perturbed for most of these systems, which probably do not arise in quiet disks and must be close to regions with intense star-formation activity and/or are part of interacting objects. All this suggests that a large fraction of the cold gas at high redshift arises in disturbed environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا