ﻻ يوجد ملخص باللغة العربية
The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Understanding phonon properties in the context of spin-phonon coupling is essential for engineering functional phononic and spintronic devices. By means of inelastic neutron scattering and first-principle calculations, anomalous scattering spectral intensity from acoustic phonon was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong correlations between spin and lattice degrees of freedom that renormalize the polarization of acoustic phonon. Anomalously large spectral intensity from acoustic phonons observed at small momentum transfer decays with increasing temperature and is successfully modeled with a modified magneto-vibrational scattering cross section, suggesting the presence of phonon driven of spin precession. On the other hand, TA phonon intensity that are forbidden by the scattering geometry is observed at a wide span of momentum transfer, suggesting a renormalization of phonon eigenvector.
Nickel oxide (NiO) has been studied extensively for various applications ranging from electrochemistry to solar cells [1,2]. In recent years, NiO attracted much attention as an antiferromagnetic (AF) insulator material for spintronic devices [3-10].
We report results of an investigation of the temperature dependence of the magnon and phonon frequencies in NiO. A combination of Brillouin - Mandelstam and Raman spectroscopies allowed us to elucidate the evolution of the phonon and magnon spectral
Sodium niobate (NaNbO3) exhibits most complex sequence of structural phase transitions in perovskite family and therefore provides as excellent model system for understanding the mechanism of structural phase transitions. We report temperature depend
The development of new electrochromic materials and devices, like smart windows, has an enormous impact on the energy efficiency of modern society. One of the crucial materials in this technology is nickel-oxide. Ni-deficient NiO shows anodic electro
We describe the ground- and excited-state electronic structure of bulk MnO and NiO, two prototypical correlated electron materials, using coupled cluster theory with single and double excitations (CCSD). As a corollary, this work also reports the fir