ﻻ يوجد ملخص باللغة العربية
Unsupervised person re-identification (re-ID) has attracted increasing research interests because of its scalability and possibility for real-world applications. State-of-the-art unsupervised re-ID methods usually follow a clustering-based strategy, which generates pseudo labels by clustering and maintains a memory to store instance features and represent the centroid of the clusters for contrastive learning. This approach suffers two problems. First, the centroid generated by unsupervised learning may not be a perfect prototype. Forcing images to get closer to the centroid emphasizes the result of clustering, which could accumulate clustering errors during iterations. Second, previous methods utilize features obtained at different training iterations to represent one centroid, which is not consistent with the current training sample, since the features are not directly comparable. To this end, we propose an unsupervised re-ID approach with a stochastic learning strategy. Specifically, we adopt a stochastic updated memory, where a random instance from a cluster is used to update the cluster-level memory for contrastive learning. In this way, the relationship between randomly selected pair of images are learned to avoid the training bias caused by unreliable pseudo labels. The stochastic memory is also always up-to-date for classifying to keep the consistency. Besides, to relieve the issue of camera variance, a unified distance matrix is proposed during clustering, where the distance bias from different camera domain is reduced and the variances of identities is emphasized.
In this paper, we present a large scale unlabeled person re-identification (Re-ID) dataset LUPerson and make the first attempt of performing unsupervised pre-training for improving the generalization ability of the learned person Re-ID feature repres
Existing person re-identification (re-id) methods mostly rely on supervised model learning from a large set of person identity labelled training data per domain. This limits their scalability and usability in large scale deployments. In this work, we
Inspired by the effectiveness of adversarial training in the area of Generative Adversarial Networks we present a new approach for learning feature representations in person re-identification. We investigate different types of bias that typically occ
Most existing person re-identification (ReID) methods rely only on the spatial appearance information from either one or multiple person images, whilst ignore the space-time cues readily available in video or image-sequence data. Moreover, they often
Person re-identification (ReID) aims at finding the same person in different cameras. Training such systems usually requires a large amount of cross-camera pedestrians to be annotated from surveillance videos, which is labor-consuming especially when