ﻻ يوجد ملخص باللغة العربية
Existing person re-identification (re-id) methods mostly rely on supervised model learning from a large set of person identity labelled training data per domain. This limits their scalability and usability in large scale deployments. In this work, we present a novel selective tracklet learning (STL) approach that can train discriminative person re-id models from unlabelled tracklet data in an unsupervised manner. This avoids the tedious and costly process of exhaustively labelling person image/tracklet true matching pairs across camera views. Importantly, our method is particularly more robust against arbitrary noisy data of raw tracklets therefore scalable to learning discriminative models from unconstrained tracking data. This differs from a handful of existing alternative methods that often assume the existence of true matches and balanced tracklet samples per identity class. This is achieved by formulating a data adaptive image-to-tracklet selective matching loss function explored in a multi-camera multi-task deep learning model structure. Extensive comparative experiments demonstrate that the proposed STL model surpasses significantly the state-of-the-art unsupervised learning and one-shot learning re-id methods on three large tracklet person re-id benchmarks.
Most existing person re-identification (ReID) methods rely only on the spatial appearance information from either one or multiple person images, whilst ignore the space-time cues readily available in video or image-sequence data. Moreover, they often
In this paper, we present a large scale unlabeled person re-identification (Re-ID) dataset LUPerson and make the first attempt of performing unsupervised pre-training for improving the generalization ability of the learned person Re-ID feature repres
The recent person re-identification research has achieved great success by learning from a large number of labeled person images. On the other hand, the learned models often experience significant performance drops when applied to images collected in
This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations. Some previous methods adopt clustering techniques to generate pseudo labels and use the produced labels to train Re-ID models progressiv
Unsupervised person re-identification (re-ID) remains a challenging task. While extensive research has focused on the framework design or loss function, we show in this paper that sampling strategy plays an equally important role. We analyze the reas