ﻻ يوجد ملخص باللغة العربية
Dimension reduction for high-dimensional compositional data plays an important role in many fields, where the principal component analysis of the basis covariance matrix is of scientific interest. In practice, however, the basis variables are latent and rarely observed, and standard techniques of principal component analysis are inadequate for compositional data because of the simplex constraint. To address the challenging problem, we relate the principal subspace of the centered log-ratio compositional covariance to that of the basis covariance, and prove that the latter is approximately identifiable with the diverging dimensionality under some subspace sparsity assumption. The interesting blessing-of-dimensionality phenomenon enables us to propose the principal subspace estimation methods by using the sample centered log-ratio covariance. We also derive nonasymptotic error bounds for the subspace estimators, which exhibits a tradeoff between identification and estimation. Moreover, we develop efficient proximal alternating direction method of multipliers algorithms to solve the nonconvex and nonsmooth optimization problems. Simulation results demonstrate that the proposed methods perform as well as the oracle methods with known basis. Their usefulness is illustrated through an analysis of word usage pattern for statisticians.
Compositional data represent a specific family of multivariate data, where the information of interest is contained in the ratios between parts rather than in absolute values of single parts. The analysis of such specific data is challenging as the a
Functional principal component analysis (FPCA) could become invalid when data involve non-Gaussian features. Therefore, we aim to develop a general FPCA method to adapt to such non-Gaussian cases. A Kenalls $tau$ function, which possesses identical e
Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method t
Motivation: Although principal component analysis is frequently applied to reduce the dimensionality of matrix data, the method is sensitive to noise and bias and has difficulty with comparability and interpretation. These issues are addressed by imp
Functional principal component analysis is essential in functional data analysis, but the inferences will become unconvincing when some non-Gaussian characteristics occur, such as heavy tail and skewness. The focus of this paper is to develop a robus