ترغب بنشر مسار تعليمي؟ اضغط هنا

Endpoint $L^1$ estimates for Hodge systems

57   0   0.0 ( 0 )
 نشر من قبل Daniel Spector
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we give a simple proof of the endpoint Besov-Lorentz estimate $$ |I_alpha F|_{dot{B}^{0,1}_{d/(d-alpha),1}(mathbb{R}^d;mathbb{R}^k)} leq C |F |_{L^1(mathbb{R}^d;mathbb{R}^k)} $$ for all $F in L^1(mathbb{R}^d;mathbb{R}^k)$ which satisfy a first order cocancelling differential constraint. We show how this implies endpoint Besov-Lorentz estimates for Hodge systems with $L^1$ data via fractional integration for exterior derivatives.



قيم البحث

اقرأ أيضاً

102 - Li Yuxiang 2008
In this paper we present a new bootstrap procedure for elliptic systems with two unknown functions. Combining with the $L^p$-$L^q$-estimates, it yields the optimal $L^infty$-regularity conditions for the three well-known types of weak solutions: $H_0 ^1$-solutions, $L^1$-solutions and $L^1_delta$-solutions. Thanks to the linear theory in $L^p_delta(Omega)$, it also yields the optimal conditions for a priori estimates for $L^1_delta$-solutions. Based on the a priori estimates, we improve known existence theorems for some classes of elliptic systems.
94 - P. Deift , X. Zhou 2002
The authors use steepest descent ideas to obtain a priori $L^p$ estimates for solutions of Riemann-Hilbert Problems. Such estimates play a crucial role, in particular, in analyzing the long-time behavior of solutions of the perturbed nonlinear Schrodinger equation on the line.
108 - M. DElia , C. Flores , X. Li 2019
Nonlocal operators that have appeared in a variety of physical models satisfy identities and enjoy a range of properties similar to their classical counterparts. In this paper we obtain Helmholtz-Hodge type decompositions for two-point vector fields in three components that have zero nonlocal curls, zero nonlocal divergence, and a third component which is (nonlocally) curl-free and divergence-free. The results obtained incorporate different nonlocal boundary conditions, thus being applicable in a variety of settings.
We study interior $L^p$-regularity theory, also known as Calderon-Zygmund theory, of the equation [ int_{mathbb{R}^n} int_{mathbb{R}^n} frac{K(x,y) (u(x)-u(y)), (varphi(x)-varphi(y))}{|x-y|^{n+2s}}, dx, dy = langle f, varphi rangle quad varphi in C _c^infty(mathbb{R}^n). ] For $s in (0,1)$, $t in [s,2s]$, $p in [2,infty)$, $K$ an elliptic, symmetric, Holder continuous kernel, if $f in left (H^{t,p}_{00}(Omega)right )^ast$, then the solution $u$ belongs to $H^{2s-t,p}_{loc}(Omega)$ as long as $2s-t < 1$. The increase in differentiability is independent of the Holder coefficient of $K$. For example, our result shows that if $fin L^{p}_{loc}$ then $uin H^{2s-delta,p}_{loc}$ for any $deltain (0, s]$ as long as $2s-delta < 1$. This is different than the classical analogue of divergence-form equations ${rm div}(bar{K} abla u) = f$ (i.e. $s=1$) where a $C^gamma$-Holder continuous coefficient $bar{K}$ only allows for estimates of order $H^{1+gamma}$. In fact, it is another appearance of the differential stability effect observed in many forms by many authors for this kind of nonlocal equations -- only that in our case we do not get a small differentiability improvement, but all the way up to $min{2s-t,1}$. The proof argues by comparison with the (much simpler) equation [ int_{mathbb{R}^n} K(z,z) (-Delta)^{frac{t}{2}} u(z) , (-Delta)^{frac{2s-t}{2}} varphi(z), dz = langle g,varphirangle quad varphi in C_c^infty(mathbb{R}^n). ] and showing that as long as $K$ is Holder continuous and $s,t, 2s-t in (0,1)$ then the commutator [ int_{mathbb{R}^n} K(z,z) (-Delta)^{frac{t}{2}} u(z) , (-Delta)^{frac{2s-t}{2}} varphi(z), dz - cint_{mathbb{R}^n} int_{mathbb{R}^n} frac{K(x,y) (u(x)-u(y)), (varphi(x)-varphi(y))}{|x-y|^{n+2s}}, dx, dy ] behaves like a lower order operator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا