ﻻ يوجد ملخص باللغة العربية
Let $R$ be a commutative ring with identity and $S$ a multiplicative subset of $R$. In this paper, we introduce and study the notions of $S$-pure $S$-exact sequences and $S$-absolutely pure modules which extend the classical notions of pure exact sequences and absolutely pure modules. And then we characterize $S$-von Neumann regular rings and uniformly $S$-Noetherian rings using $S$-absolutely pure modules.
We show that the property of a standard graded algebra R being Cohen-Macaulay is characterized by the existence of a pure Cohen-Macaulay R-module corresponding to any degree sequence of length at most depth(R). We also give a relation in terms of gra
Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $P$ is called $S$-projective provided that the induced sequence $0rightarrow {rm Hom}_R(P,A)rightarrow {rm Hom}_R(P,B)rightarrow {rm Hom}_R(P,C)rightarrow 0$ is $S$-exact for any
Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $T$ is called uniformly $S$-torsion provided that $sT=0$ for some $sin S$. The notion of $S$-exact sequences is also introduced from the viewpoint of uniformity. An $R$-module $F
We study absolutely Koszul algebras, Koszul algebras with the Backelin-Roos property and their behavior under standard algebraic operations. In particular, we identify some Veronese subrings of polynomial rings that have the Backelin-Roos property an
Let $A$ be a Noetherian flat $K[t]$-algebra, $h$ an integer and let $N$ be a graded $K[t]$-module, we introduce and study $N$-fiber-full up to $h$ $A$-modules. We prove that an $A$-module $M$ is $N$-fiber-full up to $h$ if and only if $mathrm{Ext}^i_