ترغب بنشر مسار تعليمي؟ اضغط هنا

N-fiber-full modules

158   0   0.0 ( 0 )
 نشر من قبل Hongmiao Yu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Hongmiao Yu




اسأل ChatGPT حول البحث

Let $A$ be a Noetherian flat $K[t]$-algebra, $h$ an integer and let $N$ be a graded $K[t]$-module, we introduce and study $N$-fiber-full up to $h$ $A$-modules. We prove that an $A$-module $M$ is $N$-fiber-full up to $h$ if and only if $mathrm{Ext}^i_A(M, N)$ is flat over $K[t]$ for all $ile h-1$. And we show some applications of this result extending the recent result on squarefree Grobner degenerations by Conca and Varbaro.

قيم البحث

اقرأ أيضاً

We show that the property of a standard graded algebra R being Cohen-Macaulay is characterized by the existence of a pure Cohen-Macaulay R-module corresponding to any degree sequence of length at most depth(R). We also give a relation in terms of gra ded Betti numbers, called the Herzog-Kuhl equations, for a pure R-module M to satisfy the condition dim(R) - depth(R) = dim(M) - depth(M). When R is Cohen-Macaulay, we prove an analogous result characterizing all graded Cohen-Macaulay R-modules.
105 - Xiaolei Zhang 2021
Let $R$ be a commutative ring with identity and $S$ a multiplicative subset of $R$. In this paper, we introduce and study the notions of $S$-pure $S$-exact sequences and $S$-absolutely pure modules which extend the classical notions of pure exact seq uences and absolutely pure modules. And then we characterize $S$-von Neumann regular rings and uniformly $S$-Noetherian rings using $S$-absolutely pure modules.
60 - M. Amini 2019
Let T be a tilting module.In this paper, some relative Gorenstein projective and Gortenstein injective modules are studied.
Let $(A,mathfrak{m})$ be a hypersurface ring with dimension $d$, and $M$ a MCM $A-$module with reduction no.2 and $mu(M)=2$ or $3$ then we have proved that depth$G(M)geq d-mu(M)+1$. If $e(A)=3$ and $mu(M)=4$ then in this case we have proved that dept h$G(M)geq d-3$. When $A = Q/(f)$ where $Q = k[[X_1,cdots, X_{d+1}]]$ then we give estimates for depth $G(M)$ in terms of minimal presentation of $M$. Our paper is the first systematic study of depth of associated graded modules of MCM modules over hypersurface rings.
121 - M.E. Rossi , G. Valla 2009
In this presentation we shall deal with some aspects of the theory of Hilbert functions of modules over local rings, and we intend to guide the reader along one of the possible routes through the last three decades of progress in this area of dynamic mathematical activity. Motivated by the ever increasing interest in this field, our goal is to gather together many new developments of this theory into one place, and to present them using a unifying approach which gives self-contained and easier proofs. In this text we shall discuss many results by different authors, following essentially the direction typified by the pioneering work of J. Sally. Our personal view of the subject is most visibly expressed by the presentation of Chapters 1 and 2 in which we discuss the use of the superficial elements and related devices. Basic techniques will be stressed with the aim of reproving recent results by using a more elementary approach. Over the past few years several papers have appeared which extend classical results on the theory of Hilbert functions to the case of filtered modules. The extension of the theory to the case of general filtrations on a module has one more important motivation. Namely, we have interesting applications to the study of graded algebras which are not associated to a filtration, in particular the Fiber cone and the Sally-module. We show here that each of these algebras fits into certain short exact sequences, together with algebras associated to filtrations. Hence one can study the Hilbert function and the depth of these algebras with the aid of the know-how we got in the case of a filtration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا