ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-Sample Named Entity Recognition for Security Vulnerability Reports by Fine-Tuning Pre-Trained Language Models

179   0   0.0 ( 0 )
 نشر من قبل Guanqun Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Public security vulnerability reports (e.g., CVE reports) play an important role in the maintenance of computer and network systems. Security companies and administrators rely on information from these reports to prioritize tasks on developing and deploying patches to their customers. Since these reports are unstructured texts, automatic information extraction (IE) can help scale up the processing by converting the unstructured reports to structured forms, e.g., software names a

قيم البحث

اقرأ أيضاً

Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i n pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
Zero-resource named entity recognition (NER) severely suffers from data scarcity in a specific domain or language. Most studies on zero-resource NER transfer knowledge from various data by fine-tuning on different auxiliary tasks. However, how to pro perly select training data and fine-tuning tasks is still an open problem. In this paper, we tackle the problem by transferring knowledge from three aspects, i.e., domain, language and task, and strengthening connections among them. Specifically, we propose four practical guidelines to guide knowledge transfer and task fine-tuning. Based on these guidelines, we design a target-oriented fine-tuning (TOF) framework to exploit various data from three aspects in a unified training manner. Experimental results on six benchmarks show that our method yields consistent improvements over baselines in both cross-domain and cross-lingual scenarios. Particularly, we achieve new state-of-the-art performance on five benchmarks.
153 - Xueqing Liu , Chi Wang 2021
The performance of fine-tuning pre-trained language models largely depends on the hyperparameter configuration. In this paper, we investigate the performance of modern hyperparameter optimization methods (HPO) on fine-tuning pre-trained language mode ls. First, we study and report three HPO algorithms performances on fine-tuning two state-of-the-art language models on the GLUE dataset. We find that using the same time budget, HPO often fails to outperform grid search due to two reasons: insufficient time budget and overfitting. We propose two general strategies and an experimental procedure to systematically troubleshoot HPOs failure cases. By applying the procedure, we observe that HPO can succeed with more appropriate settings in the search space and time budget; however, in certain cases overfitting remains. Finally, we make suggestions for future work. Our implementation can be found in https://github.com/microsoft/FLAML/tree/main/flaml/nlp/.
436 - Yusheng Su , Xu Han , Yankai Lin 2021
Fine-tuning pre-trained language models (PLMs) has demonstrated its effectiveness on various downstream NLP tasks recently. However, in many low-resource scenarios, the conventional fine-tuning strategies cannot sufficiently capture the important sem antic features for downstream tasks. To address this issue, we introduce a novel framework (named CSS-LM) to improve the fine-tuning phase of PLMs via contrastive semi-supervised learning. Specifically, given a specific task, we retrieve positive and negative instances from large-scale unlabeled corpora according to their domain-level and class-level semantic relatedness to the task. We then perform contrastive semi-supervised learning on both the retrieved unlabeled and original labeled instances to help PLMs capture crucial task-related semantic features. The experimental results show that CSS-LM achieves better results than the conventional fine-tuning strategy on a series of downstream tasks with few-shot settings, and outperforms the latest supervised contrastive fine-tuning strategies. Our datasets and source code will be available to provide more details.
Named Entity Recognition (NER) is a challenging task that extracts named entities from unstructured text data, including news, articles, social comments, etc. The NER system has been studied for decades. Recently, the development of Deep Neural Netwo rks and the progress of pre-trained word embedding have become a driving force for NER. Under such circumstances, how to make full use of the information extracted by word embedding requires more in-depth research. In this paper, we propose an Adversarial Trained LSTM-CNN (ASTRAL) system to improve the current NER method from both the model structure and the training process. In order to make use of the spatial information between adjacent words, Gated-CNN is introduced to fuse the information of adjacent words. Besides, a specific Adversarial training method is proposed to deal with the overfitting problem in NER. We add perturbation to variables in the network during the training process, making the variables more diverse, improving the generalization and robustness of the model. Our model is evaluated on three benchmarks, CoNLL-03, OntoNotes 5.0, and WNUT-17, achieving state-of-the-art results. Ablation study and case study also show that our system can converge faster and is less prone to overfitting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا