ﻻ يوجد ملخص باللغة العربية
This paper reports a reduced-order modeling framework of bladed disks on a rotating shaft to simulate the vibration signature of faults like cracks in different components aiming towards simulated data-driven machine learning. We have employed lumped and one-dimensional analytical models of the subcomponents for better insight into the complex dynamic response. The framework seeks to address some of the challenges encountered in analyzing and optimizing fault detection and identification schemes for health monitoring of rotating turbomachinery, including aero-engines. We model the bladed disks and shafts by combining lumped elements and one-dimensional finite elements, leading to a coupled system. The simulation results are in good agreement with previously published data. We model the cracks in a blade analytically with their effective reduced stiffness approximation. Multiple types of faults are modeled, including cracks in the blades of single and two-stage bladed disks, Fan Blade Off (FBO), and Foreign Object Damage (FOD). We have applied aero-engine operational loading conditions to simulate realistic scenarios of online health monitoring. The proposed reduced-order simulation framework will have applications in probabilistic signal modeling, machine learning toward fault signature identification, and parameter estimation with measured vibration signals.
A general-purpose computational homogenization framework is proposed for the nonlinear dynamic analysis of membranes exhibiting complex microscale and/or mesoscale heterogeneity characterized by in-plane periodicity that cannot be effectively treated
In this paper, five different approaches for reduced-order modeling of brittle fracture in geomaterials, specifically concrete, are presented and compared. Four of the five methods rely on machine learning (ML) algorithms to approximate important asp
In the construction of reduced-order models for dynamical systems, linear projection methods, such as proper orthogonal decompositions, are commonly employed. However, for many dynamical systems, the lower dimensional representation of the state spac
The recently proposed generalized epidemic modeling framework (GEMF) cite{sahneh2013generalized} lays the groundwork for systematically constructing a broad spectrum of stochastic spreading processes over complex networks. This article builds an algo
We present hidden fluid mechanics (HFM), a physics informed deep learning framework capable of encoding an important class of physical laws governing fluid motions, namely the Navier-Stokes equations. In particular, we seek to leverage the underlying