ترغب بنشر مسار تعليمي؟ اضغط هنا

One-shot Transfer Learning for Population Mapping

73   0   0.0 ( 0 )
 نشر من قبل Erzhuo Shao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fine-grained population distribution data is of great importance for many applications, e.g., urban planning, traffic scheduling, epidemic modeling, and risk control. However, due to the limitations of data collection, including infrastructure density, user privacy, and business security, such fine-grained data is hard to collect and usually, only coarse-grained data is available. Thus, obtaining fine-grained population distribution from coarse-grained distribution becomes an important problem. To tackle this problem, existing methods mainly rely on sufficient fine-grained ground truth for training, which is not often available for the majority of cities. That limits the applications of these methods and brings the necessity to transfer knowledge between data-sufficient source cities to data-scarce target cities. In knowledge transfer scenario, we employ single reference fine-grained ground truth in target city, which is easy to obtain via remote sensing or questionnaire, as the ground truth to inform the large-scale urban structure and support the knowledge transfer in target city. By this approach, we transform the fine-grained population mapping problem into a one-shot transfer learning problem. In this paper, we propose a novel one-shot transfer learning framework PSRNet to transfer spatial-temporal knowledge across cities from the view of network structure, the view of data, and the view of optimization. Experiments on real-life datasets of 4 cities demonstrate that PSRNet has significant advantages over 8 state-of-the-art baselines by reducing RMSE and MAE by more than 25%. Our code and datasets are released in Github (https://github.com/erzhuoshao/PSRNet-CIKM).



قيم البحث

اقرأ أيضاً

208 - De-An Huang , Danfei Xu , Yuke Zhu 2019
We address one-shot imitation learning, where the goal is to execute a previously unseen task based on a single demonstration. While there has been exciting progress in this direction, most of the approaches still require a few hundred tasks for meta -training, which limits the scalability of the approaches. Our main contribution is to formulate one-shot imitation learning as a symbolic planning problem along with the symbol grounding problem. This formulation disentangles the policy execution from the inter-task generalization and leads to better data efficiency. The key technical challenge is that the symbol grounding is prone to error with limited training data and leads to subsequent symbolic planning failures. We address this challenge by proposing a continuous relaxation of the discrete symbolic planner that directly plans on the probabilistic outputs of the symbol grounding model. Our continuous relaxation of the planner can still leverage the information contained in the probabilistic symbol grounding and significantly improve over the baseline planner for the one-shot imitation learning tasks without using large training data.
A crucial aspect for the successful deployment of audio-based models in-the-wild is the robustness to the transformations introduced by heterogeneous acquisition conditions. In this work, we propose a method to perform one-shot microphone style trans fer. Given only a few seconds of audio recorded by a target device, MicAugment identifies the transformations associated to the input acquisition pipeline and uses the learned transformations to synthesize audio as if it were recorded under the same conditions as the target audio. We show that our method can successfully apply the style transfer to real audio and that it significantly increases model robustness when used as data augmentation in the downstream tasks.
Humans can infer a great deal about the meaning of a word, using the syntax and semantics of surrounding words even if it is their first time reading or hearing it. We can also generalise the learned concept of the word to new tasks. Despite great pr ogress in achieving human-level performance in certain tasks (Silver et al., 2016), learning from one or few examples remains a key challenge in machine learning, and has not thoroughly been explored in Natural Language Processing (NLP). In this work we tackle the problem of oneshot learning for an NLP task by employing ideas from recent developments in machine learning: embeddings, attention mechanisms (softmax) and similarity measures (cosine, Euclidean, Poincare, and Minkowski). We adapt the framework suggested in matching networks (Vinyals et al., 2016), and explore the effectiveness of the aforementioned methods in one, two and three-shot learning problems on the task of predicting missing word explored in (Vinyals et al., 2016) by using the WikiText-2 dataset. Our work contributes in two ways: Our first contribution is that we explore the effectiveness of different distance metrics on k-shot learning, and show that there is no single best distance metric for k-shot learning, which challenges common belief. We found that the performance of a distance metric depends on the number of shots used during training. The second contribution of our work is that we establish a benchmark for one, two, and three-shot learning on a language task with a publicly available dataset that can be used to benchmark against in future research.
In biological learning, data are used to improve performance not only on the current task, but also on previously encountered and as yet unencountered tasks. In contrast, classical machine learning starts from a blank slate, or tabula rasa, using dat a only for the single task at hand. While typical transfer learning algorithms can improve performance on future tasks, their performance on prior tasks degrades upon learning new tasks (called catastrophic forgetting). Many recent approaches for continual or lifelong learning have attempted to maintain performance given new tasks. But striving to avoid forgetting sets the goal unnecessarily low: the goal of lifelong learning, whether biological or artificial, should be to improve performance on all tasks (including past and future) with any new data. We propose omnidirectional transfer learning algorithms, which includes two special cases of interest: decision forests and deep networks. Our key insight is the development of the omni-voter layer, which ensembles representations learned independently on all tasks to jointly decide how to proceed on any given new data point, thereby improving performance on both past and future tasks. Our algorithms demonstrate omnidirectional transfer in a variety of simulated and real data scenarios, including tabular data, image data, spoken data, and adversarial tasks. Moreover, they do so with quasilinear space and time complexity.
The objective of transfer reinforcement learning is to generalize from a set of previous tasks to unseen new tasks. In this work, we focus on the transfer scenario where the dynamics among tasks are the same, but their goals differ. Although general value function (Sutton et al., 2011) has been shown to be useful for knowledge transfer, learning a universal value function can be challenging in practice. To attack this, we propose (1) to use universal successor representations (USR) to represent the transferable knowledge and (2) a USR approximator (USRA) that can be trained by interacting with the environment. Our experiments show that USR can be effectively applied to new tasks, and the agent initialized by the trained USRA can achieve the goal considerably faster than random initialization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا