ﻻ يوجد ملخص باللغة العربية
We consider the problem of reconstructing the missing phase information from spectrogram data $|mathcal{G} f|,$ with $$ mathcal{G}f(x,y)=int_mathbb{R} f(t) e^{-pi(t-x)^2}e^{-2pi i t y}dt, $$ the Gabor transform of a signal $fin L^2(mathbb{R})$. More specifically, we are interested in domains $Omegasubseteq mathbb{R}^2$, which allow for stable local reconstruction, that is $$ |mathcal{G}g| approx |mathcal{G}f| quad text{in} ~Omega quadLongrightarrow quad exists tauinmathbb{T}:quad mathcal{G}g approx taumathcal{G}f quad text{in} ~Omega. $$ In recent work [P. Grohs and M. Rathmair. Stable Gabor Phase Retrieval and Spectral Clustering. Comm. Pure Appl. Math. (2019)] and [P. Grohs and M. Rathmair. Stable Gabor phase retrieval for multivariate functions. J. Eur. Math. Soc. (2021)] we established a characterization of the stability of this phase retrieval problem in terms of the connectedness of the observed measurements. The main downside of the aforementioned results is that the similarity of two spectrograms is measured w.r.t. a first order weighted Sobolev norm. In this article we remove this flaw and essentially show that the Sobolev norm may be replaced by the $L^2-$norm. Using this result allows us to show that it suffices to sample the spectrogram on suitable discrete sampling sets -- a property of crucial importance for practical applications.
In recent work [P. Grohs and M. Rathmair. Stable Gabor Phase Retrieval and Spectral Clustering. Communications on Pure and Applied Mathematics (2018)] the instabilities of the Gabor phase retrieval problem, i.e., the problem of reconstructing a funct
The problem of reconstructing a function from the magnitudes of its frame coefficients has recently been shown to be never uniformly stable in infinite-dimensional spaces [5]. This result also holds for frames that are possibly continuous [2]. On the
We establish novel uniqueness results for the Gabor phase retrieval problem: If $mathcal{G} : L^2(mathbb{R}) to L^2(mathbb{R}^2)$ denotes the Gabor transform then every $f in L^4[-c/2,c/2]$ is determined up to a global phase by the values $|mathcal{G
We consider the recovery of square-integrable signals from discrete, equidistant samples of their Gabor transform magnitude and show that, in general, signals can not be recovered from such samples. In particular, we show that for any lattice, one ca
Phase retrieval refers to the problem of recovering some signal (which is often modelled as an element of a Hilbert space) from phaseless measurements. It has been shown that in the deterministic setting phase retrieval from frame coefficients is alw