ﻻ يوجد ملخص باللغة العربية
In recent work [P. Grohs and M. Rathmair. Stable Gabor Phase Retrieval and Spectral Clustering. Communications on Pure and Applied Mathematics (2018)] the instabilities of the Gabor phase retrieval problem, i.e., the problem of reconstructing a function $f$ from its spectrogram $|mathcal{G}f|$, where $$ mathcal{G}f(x,y)=int_{mathbb{R}^d} f(t) e^{-pi|t-x|^2} e^{-2pi i tcdot y} dt, quad x,yin mathbb{R}^d, $$ have been completely classified in terms of the disconnectedness of the spectrogram. These findings, however, were crucially restricted to the onedimensional case ($d=1$) and therefore not relevant for many practical applications. In the present paper we not only generalize the aforementioned results to the multivariate case but also significantly improve on them. Our new results have comprehensive implications in various applications such as ptychography, a highly popular method in coherent diffraction imaging.
We study the phase reconstruction of signals $f$ belonging to complex Gaussian shift-invariant spaces $V^infty(varphi)$ from spectrogram measurements $|mathcal{G}f(X)|$ where $mathcal{G}$ is the Gabor transform and $X subseteq mathbb{R}^2$. An explic
We consider the problem of reconstructing the missing phase information from spectrogram data $|mathcal{G} f|,$ with $$ mathcal{G}f(x,y)=int_mathbb{R} f(t) e^{-pi(t-x)^2}e^{-2pi i t y}dt, $$ the Gabor transform of a signal $fin L^2(mathbb{R})$. More
The problem of reconstructing a function from the magnitudes of its frame coefficients has recently been shown to be never uniformly stable in infinite-dimensional spaces [5]. This result also holds for frames that are possibly continuous [2]. On the
We establish novel uniqueness results for the Gabor phase retrieval problem: If $mathcal{G} : L^2(mathbb{R}) to L^2(mathbb{R}^2)$ denotes the Gabor transform then every $f in L^4[-c/2,c/2]$ is determined up to a global phase by the values $|mathcal{G
We consider the recovery of square-integrable signals from discrete, equidistant samples of their Gabor transform magnitude and show that, in general, signals can not be recovered from such samples. In particular, we show that for any lattice, one ca