ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-imaging real-time detection and tracking of fast-moving objects using a single-pixel detector

108   0   0.0 ( 0 )
 نشر من قبل Fengming Zhou
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Detection and tracking of fast-moving objects have widespread utility in many fields. However, fulfilling this demand for fast and efficient detecting and tracking using image-based techniques is problematic, owing to the complex calculations and limited data processing capabilities. To tackle this problem, we propose an image-free method to achieve real-time detection and tracking of fast-moving objects. It employs the Hadamard pattern to illuminate the fast-moving object by a spatial light modulator, in which the resulting light signal is collected by a single-pixel detector. The single-pixel measurement values are directly used to reconstruct the position information without image reconstruction. Furthermore, a new sampling method is used to optimize the pattern projection way for achieving an ultra-low sampling rate. Compared with the state-of-the-art methods, our approach is not only capable of handling real-time detection and tracking, but also it has a small amount of calculation and high efficiency. We experimentally demonstrate that the proposed method, using a 22kHz digital micro-mirror device, can implement a 105fps frame rate at a 1.28% sampling rate when tracks. Our method breaks through the traditional tracking ways, which can implement the object real-time tracking without image reconstruction.



قيم البحث

اقرأ أيضاً

Two novel visual cryptography (VC) schemes are proposed by combining VC with single-pixel imaging (SPI) for the first time. It is pointed out that the overlapping of visual key images in VC is similar to the superposition of pixel intensities by a si ngle-pixel detector in SPI. In the first scheme, QR-code VC is designed by using opaque sheets instead of transparent sheets. The secret image can be recovered when identical illumination patterns are projected onto multiple visual key images and a single detector is used to record the total light intensities. In the second scheme, the secret image is shared by multiple illumination pattern sequences and it can be recovered when the visual key patterns are projected onto identical items. The application of VC can be extended to more diversified scenarios by our proposed schemes.
Single-pixel imaging (SPI) has a major drawback that many sequential illuminations are required for capturing one single image with long acquisition time. Basis illumination patterns such as Fourier patterns and Hadamard patterns can achieve much bet ter imaging efficiency than random patterns. But the performance is still sub-optimal since the basis patterns are fixed and non-adaptive for varying object images. This Letter proposes a novel scheme for designing and optimizing the illumination patterns adaptively from an image dictionary by extracting the common image features using principal component analysis (PCA). Simulation and experimental results reveal that our proposed scheme outperforms conventional Fourier SPI in terms of imaging efficiency.
68 - Ales Zita , Filip Sroubek 2020
Tracking fast moving objects, which appear as blurred streaks in video sequences, is a difficult task for standard trackers as the object position does not overlap in consecutive video frames and texture information of the objects is blurred. Up-to-d ate approaches tuned for this task are based on background subtraction with static background and slow deblurring algorithms. In this paper, we present a tracking-by-segmentation approach implemented using state-of-the-art deep learning methods that performs near-realtime tracking on real-world video sequences. We implemented a physically plausible FMO sequence generator to be a robust foundation for our training pipeline and demonstrate the ease of fast generator and network adaptation for different FMO scenarios in terms of foreground variations.
We propose the first learning-based approach for fast moving objects detection. Such objects are highly blurred and move over large distances within one video frame. Fast moving objects are associated with a deblurring and matting problem, also calle d deblatting. We show that the separation of deblatting into consecutive matting and deblurring allows achieving real-time performance, i.e. an order of magnitude speed-up, and thus enabling new classes of application. The proposed method detects fast moving objects as a truncated distance function to the trajectory by learning from synthetic data. For the sharp appearance estimation and accurate trajectory estimation, we propose a matting and fitting network that estimates the blurred appearance without background, followed by an energy minimization based deblurring. The state-of-the-art methods are outperformed in terms of recall, precision, trajectory estimation, and sharp appearance reconstruction. Compared to other methods, such as deblatting, the inference is of several orders of magnitude faster and allows applications such as real-time fast moving object detection and retrieval in large video collections.
Under weak illumination, tracking and imaging moving object turns out to be hard. By spatially collecting the signal, single pixel imaging schemes promise the capability of image reconstruction from low photon flux. However, due to the requirement on large number of samplings, how to clearly image moving objects is an essential problem for such schemes. Here we present a principle of single pixel tracking and imaging method. Velocity vector of the object is obtained from temporal correlation of the bucket signals in a typical computational ghost imaging system. Then the illumination beam is steered accordingly. Taking the velocity into account, both trajectory and clear image of the object are achieved during its evolution. Since tracking is achieved with bucket signals independently, this scheme is valid for capturing moving object as fast as its displacement within the interval of every sampling keeps larger than the resolution of the optical system. Experimentally, our method works well with the average number of detected photons down to 1.88 photons/speckle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا