ﻻ يوجد ملخص باللغة العربية
Let $p$ be a prime, $k$ a positive integer and let $mathbb{F}_q$ be the finite field of $q=p^k$ elements. Let $f(x)$ be a polynomial over $mathbb F_q$ and $ainmathbb F_q$. We denote by $N_{s}(f,a)$ the number of zeros of $f(x_1)+cdots+f(x_s)=a$. In this paper, we show that $$sum_{s=1}^{infty}N_{s}(f,0)x^s=frac{x}{1-qx} -frac{x { M_f^{prime}}(x)}{qM_f(x)},$$ where $$M_f(x):=prod_{minmathbb F_q^{ast}atop{S_{f, m} e 0}}Big(x-frac{1}{S_{f,m}}Big)$$ with $S_{f, m}:=sum_{xin mathbb F_q}zeta_p^{{rm Tr}(mf(x))}$, $zeta_p$ being the $p$-th primitive unit root and ${rm Tr}$ being the trace map from $mathbb F_q$ to $mathbb F_p$. This extends Richmans theorem which treats the case of $f(x)$ being a monomial. Moreover, we show that the generating series $sum_{s=1}^{infty}N_{s}(f,a)x^s$ is a rational function in $x$ and also present its explicit expression in terms of the first $2d+1$ initial values $N_{1}(f,a), ..., N_{2d+1}(f,a)$, where $d$ is a positive integer no more than $q-1$. From this result, the theorems of Chowla-Cowles-Cowles and of Myerson can be derived.
Let ${mathbb F}_q$ be the finite field with $q=p^k$ elements with $p$ being a prime and $k$ be a positive integer. For any $y, zinmathbb{F}_q$, let $N_s(z)$ and $T_s(y)$ denote the numbers of zeros of $x_1^{3}+cdots+x_s^3=z$ and $x_1^3+cdots+x_{s-1}^
Let $mathbb{F}_q$ be the finite field of $q=p^mequiv 1pmod 4$ elements with $p$ being an odd prime and $m$ being a positive integer. For $c, y inmathbb{F}_q$ with $yinmathbb{F}_q^*$ non-quartic, let $N_n(c)$ and $M_n(y)$ be the numbers of zeros of $x
We extend to large contexts pertaining to Shimura varieties of Hodge type a result of Zink on the existence of lifts to characteristic 0 of suitable representatives of certain isogeny classes of abelian varieties endowed with Frobenius and other endo
In 2013, Strauch asked how various sequences of real numbers defined from trigonometric functions such as $x_n=(cos n)^n$ distributed themselves$pmod 1$. Strauchs inquiry is motivated by several such distribution results. For instance, Luca proved th
Let $f(x)=x^{2}(x^{2}-1)(x^{2}-2)(x^{2}-3).$ We prove that the Diophantine equation $ f(x)=2f(y)$ has no solutions in positive integers $x$ and $y$, except $(x, y)=(1, 1)$.