ﻻ يوجد ملخص باللغة العربية
Zero correlation zone (ZCZ) sequences and Golay sequences are two kinds of sequences with different preferable correlation properties. It was shown by Gong textit{et al.} and Chen textit{et al.} that some Golay sequences also possess a large ZCZ and are good candidates for pilots in OFDM systems. Known Golay sequences with ZCZ reported in the literature have a limitation in the length which is the form of a power of 2. One objective of this paper is to propose a construction of Golay complementary pairs (GCPs) with new lengths whose periodic autocorrelation of each of the Golay sequences and periodic corss-correlation of the pair displays a zero correlation zone (ZCZ) around the in-phase position. Specifically, the proposed GCPs have length $4N$ (where, $N$ is the length of a GCP) and ZCZ width $N+1$. Another objective of this paper is to extend the construction to two-dimensional Golay complementary array pairs (GCAPs). Interestingly the periodic corss-correlation of the proposed GACPs also have large ZCZs around the in-phase position.
This paper is devoted to sequences and focuses on designing new two-dimensional (2-D) Z-complementary array pairs (ZCAPs) by exploring two promising approaches. A ZCAP is a pair of 2-D arrays, whose 2-D autocorrelation sum gives zero value at all tim
Cross Z-complementary pairs (CZCPs) are a special kind of Z-complementary pairs (ZCPs) having zero autocorrelation sums around the in-phase position and end-shift position, also having zero cross-correlation sums around the end-shift position. It can
The previous constructions of quadrature amplitude modulation (QAM) Golay complementary sequences (GCSs) were generalized as $4^q $-QAM GCSs of length $2^{m}$ by Li textsl{et al.} (the generalized cases I-III for $qge 2$) in 2010 and Liu textsl{et al
A new method to construct $q$-ary complementary sequence sets (CSSs) and complete complementary codes (CCCs) of size $N$ is proposed by using desired para-unitary (PU) matrices. The concept of seed PU matrices is introduced and a systematic approach
A new method to construct $q$-ary complementary sequence (or array) sets (CSSs) and complete complementary codes (CCCs) of size $N$ is introduced in this paper. An algorithm on how to compute the explicit form of the functions in constructed CSS and