ﻻ يوجد ملخص باللغة العربية
The previous constructions of quadrature amplitude modulation (QAM) Golay complementary sequences (GCSs) were generalized as $4^q $-QAM GCSs of length $2^{m}$ by Li textsl{et al.} (the generalized cases I-III for $qge 2$) in 2010 and Liu textsl{et al.} (the generalized cases IV-V for $qge 3$) in 2013 respectively. Those sequences are presented as the combination of the quaternary standard GCSs and compatible offsets. By providing new compatible offsets based on the factorization of the integer $q$, we proposed two new constructions of $4^q $-QAM GCSs, which have the generalized cases I-V as special cases. The numbers of the proposed GCSs (including the generalized cases IV-V) are equal to the product of the number of the quaternary standard GCSs and the number of the compatible offsets. For $q=q_{1}times q_{2}times dotstimes q_{t}$ ($q_k>1$), the number of new offsets in our first construction is lower bounded by a polynomial of $m$ with degree $t$, while the numbers of offsets in the generalized cases I-III and IV-V are a linear polynomial of $m$ and a quadratic polynomial of $m$, respectively. In particular, the numbers of new offsets in our first construction is seven times more than that in the generalized cases IV-V for $q=4$. We also show that the numbers of new offsets in our two constructions is lower bounded by a cubic polynomial of $m$ for $q=6$. Moreover, our proof implies that all the mentioned GCSs over QAM in this paper can be regarded as projections of Golay complementary arrays of size $2times2timescdotstimes2$.
This paper is devoted to sequences and focuses on designing new two-dimensional (2-D) Z-complementary array pairs (ZCAPs) by exploring two promising approaches. A ZCAP is a pair of 2-D arrays, whose 2-D autocorrelation sum gives zero value at all tim
Cross Z-complementary pairs (CZCPs) are a special kind of Z-complementary pairs (ZCPs) having zero autocorrelation sums around the in-phase position and end-shift position, also having zero cross-correlation sums around the end-shift position. It can
Four recursive constructions of permutation polynomials over $gf(q^2)$ with those over $gf(q)$ are developed and applied to a few famous classes of permutation polynomials. They produce infinitely many new permutation polynomials over $gf(q^{2^ell})$
In this paper, a recent method to construct complementary sequence sets and complete complementary codes by Hadamard matrices is deeply studied. By taking the algebraic structure of Hadamard matrices into consideration, our main result determine the
A new method to construct $q$-ary complementary sequence sets (CSSs) and complete complementary codes (CCCs) of size $N$ is proposed by using desired para-unitary (PU) matrices. The concept of seed PU matrices is introduced and a systematic approach