ترغب بنشر مسار تعليمي؟ اضغط هنا

Arithmetic bigness and a uniform Bogomolov-type result

138   0   0.0 ( 0 )
 نشر من قبل Xinyi Yuan
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Xinyi Yuan




اسأل ChatGPT حول البحث

In this paper, we prove that the admissible canonical bundle of the universal family of curves is a big adelic line bundle, and apply it to prove a uniform Bogomolov-type theorem for curves over global fields of all characteristics. This gives a different approach to the uniform Mordell-Lang type of result of Dimitrov-Gao-Habegger and Kuhne. The treatment is based on the recent theory of adelic line bundles of Yuan-Zhang.



قيم البحث

اقرأ أيضاً

Let X and Y be curves over a finite field. In this article we explore methods to determine whether there is a rational map from Y to X by considering L-functions of certain covers of X and Y and propose a specific family of covers to address the spec ial case of determining when X and Y are isomorphic. We also discuss an application to factoring polynomials over finite fields.
Let $p$ be a prime, let $r$ and $q$ be powers of $p$, and let $a$ and $b$ be relatively prime integers not divisible by $p$. Let $C/mathbb F_{r}(t)$ be the superelliptic curve with affine equation $y^b+x^a=t^q-t$. Let $J$ be the Jacobian of $C$. By w ork of Pries--Ulmer, $J$ satisfies the Birch and Swinnerton-Dyer conjecture (BSD). Generalizing work of Griffon--Ulmer, we compute the $L$-function of $J$ in terms of certain Gauss sums. In addition, we estimate several arithmetic invariants of $J$ appearing in BSD, including the rank of the Mordell--Weil group $J(mathbb F_{r}(t))$, the Faltings height of $J$, and the Tamagawa numbers of $J$ in terms of the parameters $a,b,q$. For any $p$ and $r$, we show that for certain $a$ and $b$ depending only on $p$ and $r$, these Jacobians provide new examples of families of simple abelian varieties of fixed dimension and with unbounded analytic and algebraic rank as $q$ varies through powers of $p$. Under a different set of criteria on $a$ and $b$, we prove that the order of the Tate--Shafarevich group of $J$ grows quasilinearly in $q$ as $q to infty.$
Arithmetic dynamics is the study of number theoretic properties of dynamical systems. A relatively new field, it draws inspiration partly from dynamical analogues of theorems and conjectures in classical arithmetic geometry, and partly from $p$-adic analogues of theorems and conjectures in classical complex dynamics. In this article we survey some of the motivating problems and some of the recent progress in the field of arithmetic dynamics.
The integral model of a GU(n-1,1) Shimura variety carries a universal abelian scheme over it, and the dual top exterior power of its Lie algebra carries a natural hermitian metric. We express the arithmetic volume of this metrized line bundle, define d as an iterated self-intersection in the Gillet-Soule arithmetic Chow ring, in terms of logarithmic derivatives of Dirichlet L-functions.
137 - M. Longo , S. Vigni 2009
Given a newform f, we extend Howards results on the variation of Heegner points in the Hida family of f to a general quaternionic setting. More precisely, we build big Heegner points and big Heegner classes in terms of compatible families of Heegner points on towers of Shimura curves. The novelty of our approach, which systematically exploits the theory of optimal embeddings, consists in treating both the case of definite quaternion algebras and the case of indefinite quaternion algebras in a uniform way. We prove results on the size of Nekovav{r}s extended Selmer groups attached to suitable big Galois representations and we formulate two-variable Iwasawa main conjectures both in the definite case and in the indefinite case. Moreover, in the definite case we propose refined conjectures `a la Greenberg on the vanishing at the critical points of (twists of) the L-functions of the modular forms in the Hida family of f living on the same branch as f.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا