ﻻ يوجد ملخص باللغة العربية
Let X and Y be curves over a finite field. In this article we explore methods to determine whether there is a rational map from Y to X by considering L-functions of certain covers of X and Y and propose a specific family of covers to address the special case of determining when X and Y are isomorphic. We also discuss an application to factoring polynomials over finite fields.
This is an introduction to a probabilistic model for the arithmetic of elliptic curves, a model developed in a series of articles of the author with Bhargava, Kane, Lenstra, Park, Rains, Voight, and Wood. We discuss the theoretical evidence for the m
We investigate the arithmetic of algebraic curves on coarse moduli spaces for special linear rank two local systems on surfaces with fixed boundary traces. We prove a structure theorem for morphisms from the affine line into the moduli space. We show
Let $p$ be a prime, let $r$ and $q$ be powers of $p$, and let $a$ and $b$ be relatively prime integers not divisible by $p$. Let $C/mathbb F_{r}(t)$ be the superelliptic curve with affine equation $y^b+x^a=t^q-t$. Let $J$ be the Jacobian of $C$. By w
We study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^{r-1}(x + 1)(x + t)$ over the function field $mathbb{F}_p(t)$, when $p$ is prime and $rge 2$ is an integer prime to $p$. When $q$ is a power of $p$
Arithmetic dynamics is the study of number theoretic properties of dynamical systems. A relatively new field, it draws inspiration partly from dynamical analogues of theorems and conjectures in classical arithmetic geometry, and partly from $p$-adic