ﻻ يوجد ملخص باللغة العربية
Observations of powerful radio waves from neutron star magnetospheres raise the question of how strong waves interact with particles in a strong background magnetic field $B_{bg}$. This problem is examined by solving the particle motion in the wave. Remarkably, waves with amplitudes $E_0>B_{bg}$ pump particle energy via repeating resonance events, quickly reaching the radiation reaction limit. As a result, the wave is scattered with a huge cross section. This fact has great implications for models of fast radio bursts and magnetars. Particles accelerated in the wave emit gamma-rays, which can trigger an $e^pm$ avalanche and, instead of silent escape, the wave will produce X-ray fireworks.
The review is devoted to a discussion of new (and often unexpected) aspects of the old problem of elastic light scattering by small metal particles, whose size is comparable to or smaller than the thickness of the skin layer. The main focus is put on
Relativistic magnetized shocks are a natural source of coherent emission, offering a plausible radiative mechanism for Fast Radio Bursts (FRBs). We present first-principles 3D simulations that provide essential information for the FRB models based on
Mildly relativistic shocks in magnetized electron-ion plasmas are investigated with 2D kinetic particle-in-cell simulations of unprecedentedly high resolution and large scale for conditions that may be found at internal shocks in blazar cores. Ion-sc
We present a linear stability analysis of the perturbation modes in anisotropic MHD flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model, that take
We study semi-analytical time-dependent solutions of the relativistic magnetohydrodynamic (MHD) equations for the fields and the fluid emerging from a spherical source. We assume uniform expansion of the field and the fluid and a polytropic relation