ﻻ يوجد ملخص باللغة العربية
The review is devoted to a discussion of new (and often unexpected) aspects of the old problem of elastic light scattering by small metal particles, whose size is comparable to or smaller than the thickness of the skin layer. The main focus is put on elucidating the physical grounds for these new aspects. It is shown that, in many practically important cases, the scattering of light by such particles, despite their smallness, may have almost nothing in common with the Rayleigh one. The so-called, anomalous scattering and absorption, as well as Fano resonances, including unconventional (associated with the excitation of longitudinal electromagnetic oscillations) and directional Fano resonances, observed only in a small solid angle, are discussed in detail. The review contains a Mathematical Supplement, which includes a summary of the main results of the Mie theory and a discussion of some general properties of the scattering coefficients. In addition to purely academic interest, the phenomena considered in this review can find wide applications in biology, medicine, pharmacology, genetic engineering, imaging of ultra-small objects, ultra-high-resolution spectroscopy, information transmission, recording, and processing, and many other applications and technologies. The reported study was funded by RFBR, project number 19-11-00001 and the project of the Russian Science Foundation No. 19-72-30012, within the framework of which all the original calculations given in this publication were performed.
Observations of powerful radio waves from neutron star magnetospheres raise the question of how strong waves interact with particles in a strong background magnetic field $B_{bg}$. This problem is examined by solving the particle motion in the wave.
We theoretically investigate the optical force exerted on an isotropic particle illuminated by a superposition of plane waves. We derive explicit analytical expressions for the exerted force up to quadrupolar polarizabilities. Based on these analytic
Refraction and diffraction of waves in natural crystals and artificial crystals formed by anisotropically scattering centers are considered. A detailed study of the electromagnetic wave refraction in a two-dimensional photonic crystal formed by paral
Metasurfaces have shown unprecedented possibilities for wavefront manipulation of waves. The research efforts have been focused on the development of metasurfaces that perform a specific functionality for waves of one physical nature, for example, fo
A new type of resonant light absorption by a small particle (nanocluster) is reported. The problem cannot be described within the commonly used dipole scattering approximation and should be studied with methods based upon the exact Mie solution. It i