ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant scattering of electromagnetic waves by small metal particles

83   0   0.0 ( 0 )
 نشر من قبل Michael Tribelsky
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The review is devoted to a discussion of new (and often unexpected) aspects of the old problem of elastic light scattering by small metal particles, whose size is comparable to or smaller than the thickness of the skin layer. The main focus is put on elucidating the physical grounds for these new aspects. It is shown that, in many practically important cases, the scattering of light by such particles, despite their smallness, may have almost nothing in common with the Rayleigh one. The so-called, anomalous scattering and absorption, as well as Fano resonances, including unconventional (associated with the excitation of longitudinal electromagnetic oscillations) and directional Fano resonances, observed only in a small solid angle, are discussed in detail. The review contains a Mathematical Supplement, which includes a summary of the main results of the Mie theory and a discussion of some general properties of the scattering coefficients. In addition to purely academic interest, the phenomena considered in this review can find wide applications in biology, medicine, pharmacology, genetic engineering, imaging of ultra-small objects, ultra-high-resolution spectroscopy, information transmission, recording, and processing, and many other applications and technologies. The reported study was funded by RFBR, project number 19-11-00001 and the project of the Russian Science Foundation No. 19-72-30012, within the framework of which all the original calculations given in this publication were performed.



قيم البحث

اقرأ أيضاً

Observations of powerful radio waves from neutron star magnetospheres raise the question of how strong waves interact with particles in a strong background magnetic field $B_{bg}$. This problem is examined by solving the particle motion in the wave. Remarkably, waves with amplitudes $E_0>B_{bg}$ pump particle energy via repeating resonance events, quickly reaching the radiation reaction limit. As a result, the wave is scattered with a huge cross section. This fact has great implications for models of fast radio bursts and magnetars. Particles accelerated in the wave emit gamma-rays, which can trigger an $e^pm$ avalanche and, instead of silent escape, the wave will produce X-ray fireworks.
We theoretically investigate the optical force exerted on an isotropic particle illuminated by a superposition of plane waves. We derive explicit analytical expressions for the exerted force up to quadrupolar polarizabilities. Based on these analytic al expressions, we demonstrate that an illumination consisting of two tilted plane waves can provide a full control on the optical force. In particular, optical pulling, pushing and lateral forces can be obtained by the proper tuning of illumination parameters. Our findings might unlock multiple applications based on a deterministic control of the spatial motion of small particles.
Refraction and diffraction of waves in natural crystals and artificial crystals formed by anisotropically scattering centers are considered. A detailed study of the electromagnetic wave refraction in a two-dimensional photonic crystal formed by paral lel threads is given by way of example. The expression is derived for the effective amplitude of wave scattering by a thread (in a crystal) for the case when scattering by a single thread in a vacuum is anisotropic. It is established that for a wave with orthogonal polarization, unlike a wave with parallel polarization, the index of refraction in crystals built from metallic threads can be greater than unity, and Vavilov-Chrernkov radiation becomes possible in them. The set of equations describing the dynamical diffraction of waves in crystals is derived for the case when scattering by a single center in a vacuum is anisotropic. Because a most general approach is applied to the description of the scattering process, the results thus obtained are valid for a wide range of cases without being restricted to either electromagnetic waves or crystals built from threads.
Metasurfaces have shown unprecedented possibilities for wavefront manipulation of waves. The research efforts have been focused on the development of metasurfaces that perform a specific functionality for waves of one physical nature, for example, fo r electromagnetic waves. In this work, we propose the use of power-flow conformal metamirrors for creation of multiphysics devices which can simultaneously control waves of different nature. In particular, we introduce metasurface devices which perform specified operations on both electromagnetic and acoustic waves at the same time. Using a purely analytical model based on surface impedances, we introduce metasurfaces that perform the same functionality for electromagnetic and acoustic waves and, even more challenging, different functionalities for electromagnetics and acoustics. We provide realistic topologies for practical implementations of proposed metasurfaces and confirm the results with numerical simulations.
A new type of resonant light absorption by a small particle (nanocluster) is reported. The problem cannot be described within the commonly used dipole scattering approximation and should be studied with methods based upon the exact Mie solution. It i s shown that the absorption cross-section has giant maxima realized at small values of the imaginary part of the complex dielectric permittivity of the particle. The maxima are situated in the vicinity of the plasmon (polariton) resonances and correspond to the regions where the dissipative damping equals the radiative one. The case is similar to the recently introduced anomalous scattering [PRL vol. 97, 263902 (2006)] and exhibits similar peculiarities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا