ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry-enforced topological band crossings in orthorhombic crystals: Classification and materials discovery

199   0   0.0 ( 0 )
 نشر من قبل Andreas Leonhardt
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify all symmetry-enforced band crossings in nonmagnetic orthorhombic crystals with and without spin-orbit coupling and discuss their topological properties. We find that orthorhombic crystals can host a large number of different band degeneracies, including movable Weyl and Dirac points with hourglass dispersions, fourfold double Weyl points, Weyl and Dirac nodal lines, almost movable nodal lines, nodal chains, and topological nodal planes. Interestingly, spin-orbit coupled materials in the space groups 18, 36, 44, 45, and 46 can have band pairs with only two Weyl points in the entire Brillouin zone. This results in a simpler connectivity of the Fermi arcs and more pronounced topological responses than in materials with four or more Weyl points. In addition, we show that the symmetries of the space groups 56, 61, and 62 enforce nontrivial weak $mathbb{Z}_2$ topology in materials with strong spin-orbit coupling, leading to helical surface states. With these classification results in hand, we perform extensive database searches for orthorhombic materials crystallizing in the relevant space groups. We find that Sr$_2$Bi$_3$ and Ir$_2$Si have bands crossing the Fermi energy with a symmetry-enforced nontrivial $mathbb{Z}_2$ invariant, CuIrB possesses nodal chains near the Fermi energy, Pd$_7$Se$_4$ and Ag$_2$Se exhibit fourfold double Weyl points, the latter one even in the absence of spin-orbit coupling, whereas the fourfold degeneracies in AuTlSb are made up from intersecting nodal lines. For each of these examples we compute the ab-initio band structures, discuss their topologies, and for some cases also calculate the surface states.



قيم البحث

اقرأ أيضاً

Nonsymmoprhic symmetries, such as screw rotations or glide reflections, can enforce band crossings within high-symmetry lines or planes of the Brillouin zone. When these band degeneracies are close to the Fermi energy, they can give rise to a number of unusual phenomena: e.g., anomalous magnetoelectric responses, transverse Hall currents, and exotic surface states. In this paper, we present a comprehensive classification of such nonsymmorphic band crossings in trigonal materials with strong spin-orbit coupling. We find that in trigonal systems there are two different types of nonsymmorphic band degeneracies: (i) Weyl points protected by screw rotations with an accordion-like dispersion, and (ii) Weyl nodal lines protected by glide reflections. We report a number of existing materials, where these band crossings are realized near the Fermi energy. This includes Cu2SrSnS4 and elemental tellurium (Te), which exhibit accordion Weyl points; and the tellurium-silicon clathrate Te16Si38, which shows Weyl nodal lines. The ab-initio band structures and surface states of these materials are studied in detail, and implications for experiments are briefly discussed.
We study the occurrence of symmetry-enforced topological band crossings in tetragonal crystals with strong spin-orbit coupling. By computing the momentum dependence of the symmetry eigenvalues and the global band topology in the entire Brillouin zone , we determine all symmetry-enforced band crossings in tetragonal space groups. In particular, we classify all Dirac and Weyl degeneracies on points, lines, and planes, and find a rich variety of topological degeneracies. This includes, among others, double Weyl points, fourfold-double Weyl points, fourfold-quadruple Weyl points, Weyl and Dirac nodal lines, as well as topological nodal planes. For the space groups with symmetry-enforced Weyl points, we determine the minimal number of Weyl points for a given band pair and, remarkably, find that materials in space groups 119 and 120 can have band pairs with only two Weyl points in the entire Brillouin zone. This simplifies the topological responses, which would be useful for device applications. Using the classification of symmetry-enforced band crossings, we perform an extensive database search for candidate materials with tetragonal space groups. Notably, we find that Ba$_5$In$_4$Bi$_5$ and NaSn$_5$ exhibit twofold and fourfold Weyl nodal lines, respectively, which cross the Fermi energy. Hf$_3$Sb and Cs$_2$Tl$_3$ have band pairs with few number of Weyl points near the Fermi energy. Furthermore, we show that Ba$_3$Sn$_2$ has Weyl points with an accordion dispersion and topological nodal planes, while AuBr and Tl$_4$PbSe$_3$ possess Dirac points with hourglass dispersions. For each of these candidate materials we present the ab-initio band structures and discuss possible experimental signatures of the nontrivial band topology.
Topological semimetals exhibit band crossings near the Fermi energy, which are protected by the nontrivial topological character of the wave functions. In many cases, these topological band degeneracies give rise to exotic surface states and unusual magneto-transport properties. In this paper, we present a complete classification of all possible nonsymmorphic band degeneracies in hexagonal materials with strong spin-orbit coupling. This includes (i) band crossings protected by conventional nonsymmorphic symmetries, whose partial translation is within the invariant space of the mirror/rotation symmetry; and (ii) band crossings protected by off-centered mirror/rotation symmetries, whose partial translation is orthogonal to the invariant space. Our analysis is based on (i) the algebraic relations obeyed by the symmetry operators and (ii) the compatibility relations between irreducible representations at different high-symmetry points of the Brillouin zone. We identify a number of existing materials where these nonsymmorphic nodal lines are realized. Based on these example materials, we examine the surface states that are associated with the topological band crossings. Implications for experiments and device applications are briefly discussed.
Flat bands have band crossing points with other dispersive bands in many systems including the canonical flat band models in the Lieb and kagome lattices. Here we show that some of such band degeneracy points are unavoidable because of the symmetry r epresentation (SR) of the flat band under unitary symmetry. We refer to such a band degeneracy point of flat bands as a SR-enforced band crossing. SR-enforced band crossing is distinct from the conventional band degeneracy protected by symmetry eigenvalues or topological charges in that its protection requires both specific symmetry representation and band flatness of the flat band, simultaneously. Even $n$-fold rotation $C_n$ ($n=2,3,4,6$) symmetry, which cannot protect band degeneracy without additional symmetries due to its abelian nature, can protect SR-enforced band crossings in flat band systems. In two-dimensional flat band systems with $C_n$ symmetry, when the degeneracy of a SR-enforced band crossing is lifted by a $C_n$ symmetry-preserving perturbation, we obtain a nearly flat Chern band. Our theory not only explains the origin of the band crossing points of FBs existing in various models, but also gives a strict no-go theorem for isolated FBs in a given lattice arising from the SR.
We present a review of topological electronic materials discovery in crystalline solids from the prediction of the first 2D and 3D topological insulators (TIs) through the recently introduced methods that have facilitated large-scale searches for top ological materials. We first briefly review the concepts of band theory and topology, as well as the experimental methods used to demonstrate nontrivial topology in solid-state materials. We then review the past 15 years of topological materials discovery, including the identification of the first nonmagnetic TIs, topological crystalline insulators (TCIs), and topological semimetals (TSMs). Most recently, through complete analyses of symmetry-allowed band structures - including the theory of Topological Quantum Chemistry (TQC) - researchers have determined crystal-symmetry-enhanced Wilson-loop and complete symmetry-based indicators for nonmagnetic topological phases, leading to the discovery of higher-order TCIs and TSMs. Lastly, we discuss the recent application of TQC and related methods to high-throughput materials discovery, which revealed that over half of all of the known stoichiometric, solid-state, nonmagnetic materials are topological at the Fermi level, over 85% of the known stoichiometric materials host energetically isolated topological bands, and that just under $2/3$ of the energetically isolated bands in known materials carry the stable topology of a TI or TCI. We conclude by discussing future venues for the identification and manipulation of solid-state topological phases, including charge-density-wave compounds, magnetic materials, and 2D few-layer devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا